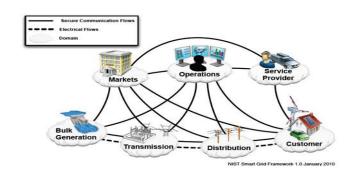


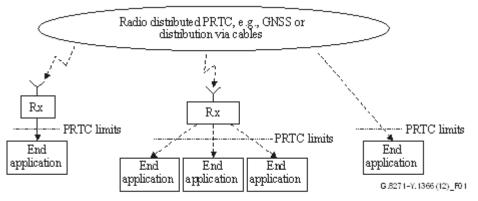
CONTENTS

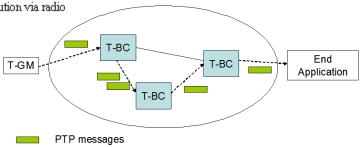
- > Background
- > Deployment issues
- > Status with PTS / APTS; what is missing
- Other Initiatives
- > Conclusions

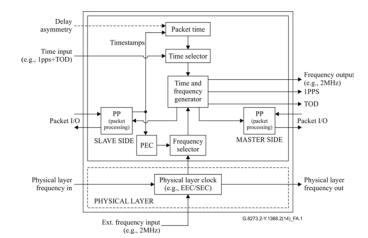


TIME SYNC NEEDS

- > Mobile networks sync needs have traditionally been driving most of the activities in the standardization bodies ((C))
 - -TDD, eICIC, CoMP, Dual Connectivity ...
 - -Generally in the microsecond range, 5G may need much tighter requirement
- > Emerging needs
 - -Financial, Power, Intelligent Transportation Systems
 - Most stringent requirements are in the microseconds, however great variation (up to ms)
- Originally only in North America and China.
 - > The need is spreading also in other parts of the world
 - > Increased interest as moving towards 5G

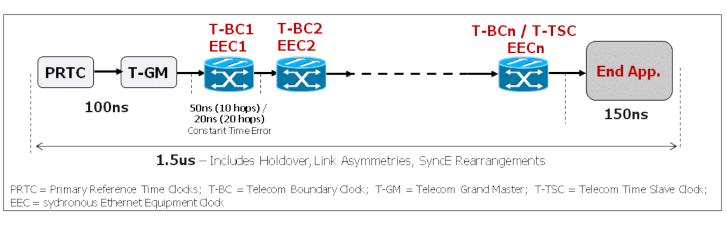



TIME SYNC MASTERS AND DISTRIBUTION Radio distributed PR


3

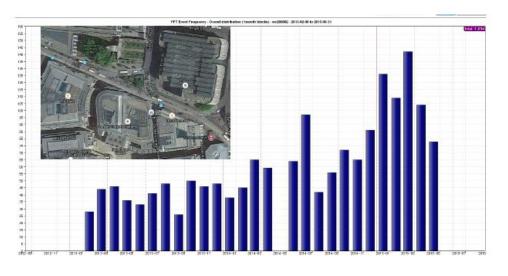
> Solutions: GNSS, PTP, Others ...

- > Status?
 - Traditional approach: GNSS
 - Need to complement with other solutions (vulnerability, visibility of the sky)
 - PTP as main approach to distributed accurate time sync :
 - Full support and Partial timing support
 - Fundamental assumption for symmetric path
 - Need to control variable and static asymmetries;
 - > With SyncE (fully standardized) / without SyncE (under study)
- > SyncE
 - It provides only frequency, but it can be used to complement PTP
 - > e.g. enhanced stability and/or enhanced time sync holdover
 - Need for «full support»



WHY PTP WITH FULL TIMING SUPPORT (FTS)?

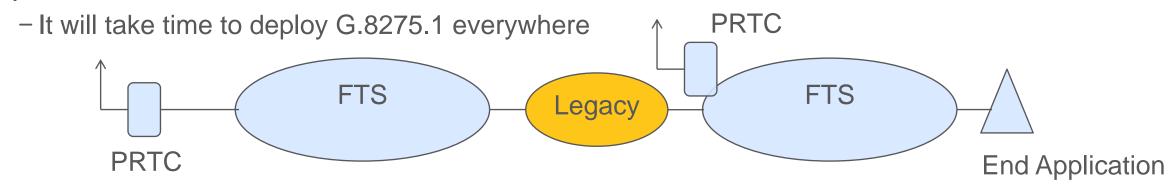
- > Packet-based method with timing support from the network
 - All the network nodes on the path of the synchronization flow implement BC or TC
- > Work focused on this approach first
 - Need to remove dependency from traffic conditions; analogous to SDH analysis
 - Chain of equipment with well defined performance. Possible to predict worst case at the output of the chain
 - Expected higher performance
 - Note: static assymmetries due to link still relevant ...



Budget Component	Failure scenario a)	Failure scenario b)	Long Holdover periods (e.g., 1 day)
PRTC (ce _{ref})	100 ns	100 ns	100 ns
Holdover and Rearrangements in the network (TE _{HO})	NA	400 ns	2'400 ns
Random and error due to synchronous Ethernet rearrangements (dTE')	200 ns	200 ns	200 ns
Node Constant including intrasite (ce_{ptp_clock})	550 ns (Note 1)	550 ns (Note 1)	550 ns (Note 1)
	420 ns (Note 2)	420 ns (Note 2)	420 ns (Note 2)
Link Asymmetries (ce _{link_asym}) (Note 3)	250 ns	100 ns	100 ns
	380 ns	230 ns	230 ns
Rearrangements and short Holdover in the End Application (TE _{REA})	250 ns	NA	NA
End application (TE _{EA})	150 ns	150 ns	150 ns
Total (TE _D)	1'500 ns	1'500 ns	3'500 ns (Note 4)

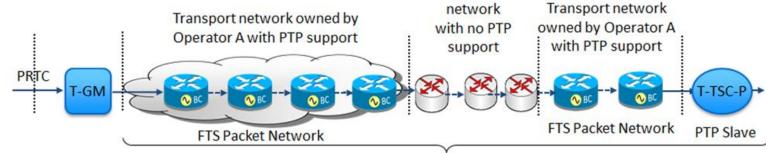
GNSS VULNERABILITY

- In addition to traditional concerns of installation and visibility of sky, recent increased concerns in terms of vulnerability
- > The use of GNSS jammers are increasing
- January 2016 have been reported
- Important to define back up alternatives and to add redundancy to GNSS



GPS Jamming Events per month From C. Curry, Chronos ITSF 2015

IEEE 1588 EVERYWHERE?



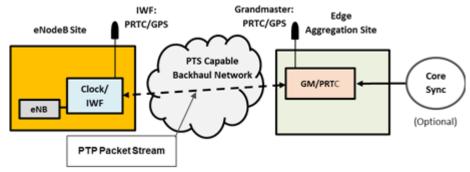
Operators will have to address legacy deployments (with no PTP support) for quite some time

- > Interworking between operators will need to be addressed
 - A full timing support in general implies a single administrative domain (use of TC in this application is still questioned)

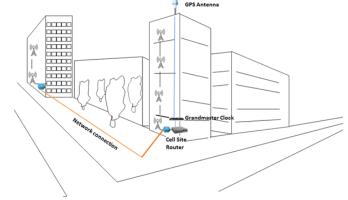
From WD62 (Washington, June 2016)

transport

New Appendix in G.8271.2 Draft:


Use of Partial Timing Support to bridge between two Full Timing Support Networks

PTS / APTS : REQUESTS FROM OPERATORS



> Contribution from Sprint and other operators in 2012 triggered the start of work on partial timing support Grandmaster: Edge

- Assisted Partial Time Support (APTS) as main use case (GPS back-up)
- AT&T contribution to address a partial timing support, but in a small network
 - The proposal focused on indoor (mall, campus, stadium) applications
- Ongoing Debate on pure Partial Time Support (PTS):
 - However other operators are also interested in GPS back-up (APTS) no issue with static asymmetry in this case

From WD25 (Q13, Kansas City, 2013)

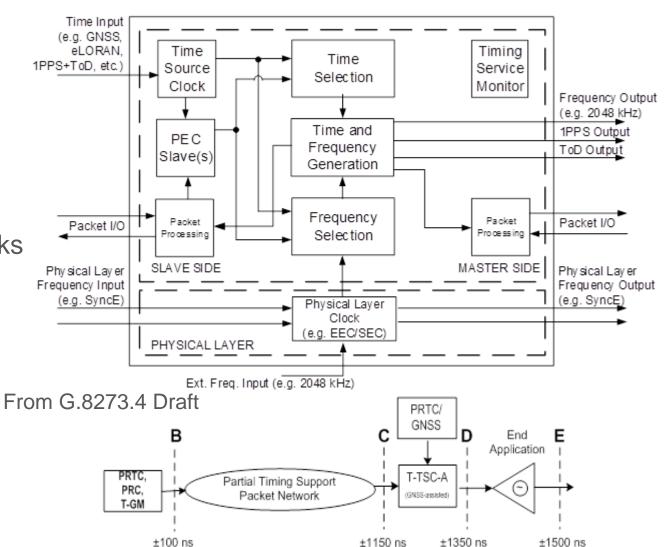
From WD20 (Q13, Sophia Antipolis, 2013)

PTS / APTS STATUS, 1

- > Profile (8275.2) consented earlier this year (February 2016)
- > Long debate on simple vs. more sophisticated BMCA solution (allowing for BCs)
- Main Characteristics of the profile
 - IP Unicast
 - BMCA similar to 8275.1
 - Possibility to exchange messages irrespective of the port state
- Some aspect still missing in 8275.2 and in general in the APTS /PTS studies, see also next slide :
 - Guidelines on the use of BCs
 - Performance aspects
 - Clock requirements
 - Details on Grand Master redundancy

PTS / APTS STATUS, CONT.

> Network Limits:


 Initial agreements on metrics and network limits/budgeting

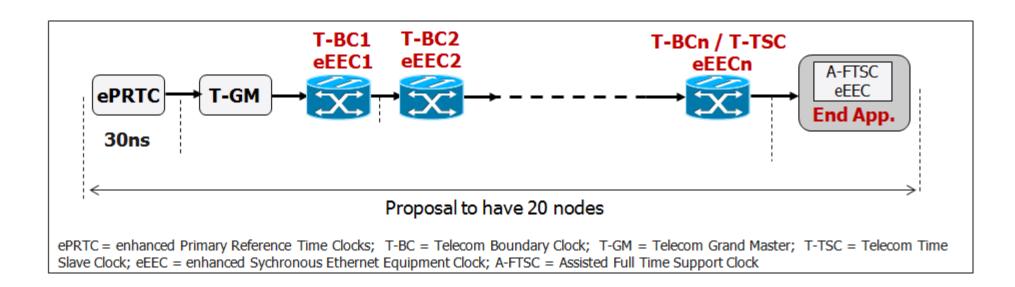
Clock Requirements

 G.8273.4 will include all requirements for partial timing support telecom boundary clocks and telecom time slave clocks

> HRM (Hypothetical Reference Model)

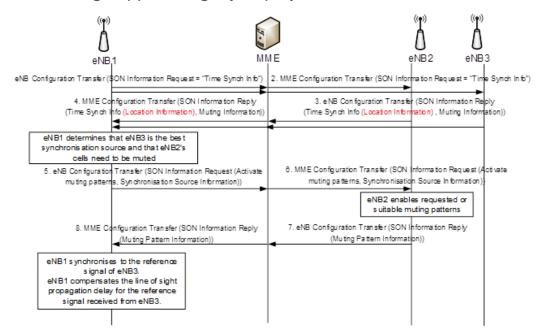
 HRM needs to be defined and simulations will be required to be able to define the characteristics of the clocks (e.g. T-BCs)

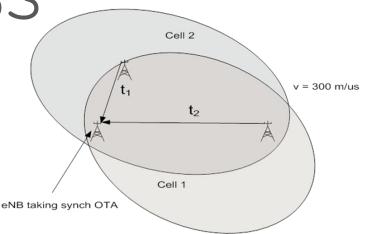
PTS / APTS VS. FTS



- > APTS (and PTS) is not equivalent to FTS
 - Applicable to different use cases
- > FTS provides a predictable performance (network limits, clock requirements, well defined network)
- > APTS: only as back up to GNSS
 - Static asymmetry is not an issue
 - Control of dynamic noise and variable asymmetry requires careful planning
- > PTS: major issue, no control of static asymmetry. Other means are needed (at installation?). Similar to APTS in terms of control of the dynamic noise and of the variable asymmetry
 - Perfomance is still under study
 - Perhaps suitable for less demanding services

ASSISTED FTS?


- > Proposal for assisted FTS (DT)
- A new Class of Telecom Boundary clock (T-BC class C), enhanced Synchronous Ethernet and enhanced PRTC to be used for this application
- > FTS with GNSS to achieve even better accuracy
 - Can be used for GNSS backup with a max|TE| of 100ns

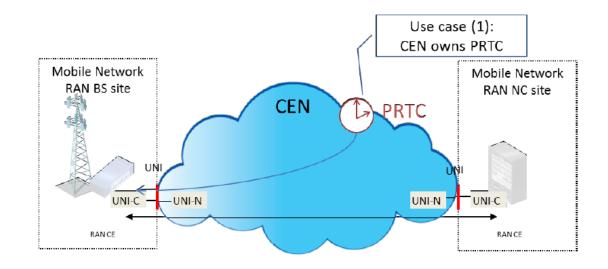


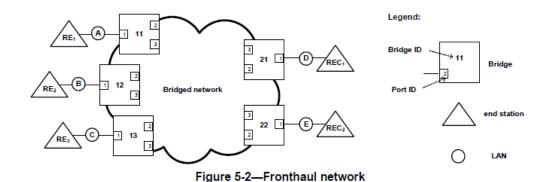
OTHER INITIATIVES: RIBS

3

- > RIBS (Radio Interface Based Synchronization) standardized at 3GPP
 - synchronization over the radio interface ("Network listening", originally to address TDD femtocells needs, TR 36.922)
 - signaling messages specified in TS 36.413 and TS 32.592
- To address the case when the network does not allow for accurate timing distribution
 - Internet-grade backhaul
 - partial timing support / legacy deployments

- > TR 36.898, Network Assistance for Network Synchronization with Solutions to improve the performance being evaluated:
 - Solution #1: Network based solution using detection of UE transmission
 - Solution # 2: OTA Synchronisation with Propagation Delay Compensation
 - Solution # 3: OTA Synchronisation with Propagation Delay Compensation Based on Timing Advance
 - Solution # 4: Propagation Delay Compensation for RIBS
 Based on Location Information Exchange


Presented in ITU-T at the last SG15 meeting: future candidate for G.8271?


OTHER INITIATIVES: MEF, IEEE, ...

> MEF/BBF:

- TR-221, Technical Specifications for MPLS in Mobile Backhaul Networks
- MEF 22.1, MEF 22.2.1, MEF 22.3: Implementation
 Agreement on Mobile Backhaul
 - addressing request from operators to define well specified functions and related performance at the relevant network interfaces
 - Generally relying on ITU-T sync solutions (e.g. Telecom Profiles)
- > IEEE 802.1CM: fronthaul sync
 - Ongoing discussions with initial set of requirements (from CPRI) and potential solutions (e.g. Telecom PTP profile with a specific HRM)
 - Exchange of liaisons with Q13/15
- Other industries may have specific PTP profiles,
 e.g. Power profile

CONCLUSIONS

- > Emerging and increased needs for time sync
- > Work in the standards important for interoperability and performance, and for the success of a specific technology
- > Important to get input from network Operators
 - Often different needs and requests have to be accommodated
- Network migration, legacy deployments, interworking between different operators network need to be addressed
- Assisted partial timing support as an example of meeting the needs of specific geographical areas, but finding applications worldwide
- Important to understand the fundamental differences between FTS and PTS / APTS
 - They are not equivalent. Applicable to different applications / networks
- > Not a single solution fits it all ...
- > Emerging solutions adopted as needed (e.g. RIBS)

REFERENCES

- > Timing over packet networks in ITU-T: ITU-T G.826x series, G.827x series,
- > ITU-T general definitions: G.810, G.8260
- > PTP: IEEE 1588-2008
- > RIBS: 3GPP TR 36.898, Study on Network Based Synchronization for LTE
- > Fronthaul: IEEE P802.1CM, Time-Sensitive Networks for Fronthaul