

The Missing Link

Geolocation: a new pillar in IoT

Unique data identifier

Richer experience = \$\$

• Detect deviations

Types of location usage

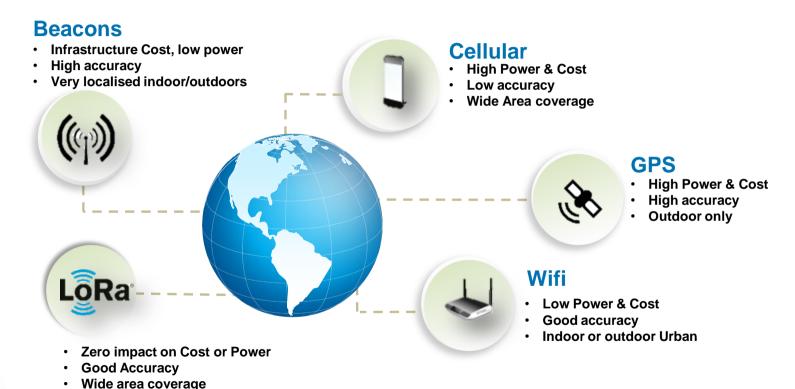
Navigate

Determine directions to something or someone

Track

Follow the path of something or someone

Locate


Find the position of something or someone

Manage

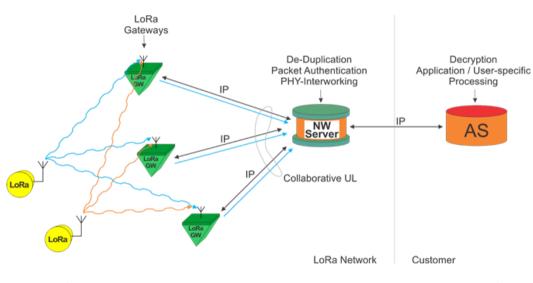
Manage proximity using data fusion

Geolocation Choices

Selection criteria

By the end of 2020, there will be more than 15 Billion connected devices in IoT. Of those, approximately one-third will be critically dependent on geodata, and 60% will potentially include geodata in the application.

Machina Research



'Clean-sheet' network

Minimal dedicated hardware (super-simple gateways)

All network functions are performed in the cloud

Sensors connect to the 'cloud' and NOT to a base-station (all gateways are identical)

Simple Hardware

Cloud / software

LoRaWAN™ Geolocation Trial

All base stations (gateways) share a common time-base

E.g. provided by GPS, GNSS, DTI or similar

An end-device transmits a packet

Packet received by at least three gateways

Each gateway reports the precise time of arrival & other meta data such as signal strength, signal to noise ratio etc.

Algorithms compare the time of arrival (DTOA)

Taking into account signal strength and other parameters

Compute the most likely position of the sensor

Hybrid data fusion techniques & map matching enhancements improve accuracy

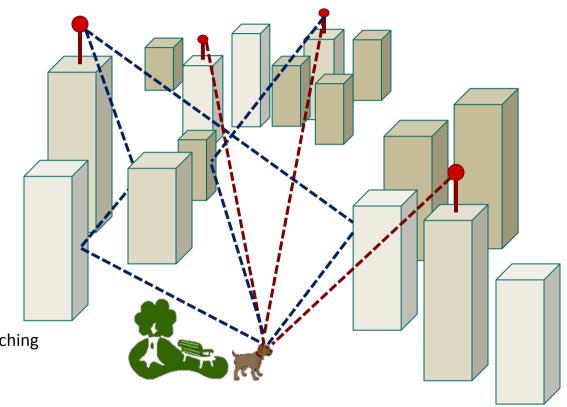
Note: All LoRaWAN gateways receive on all channels & data rates at all times

The system completely relies on synchronisation!

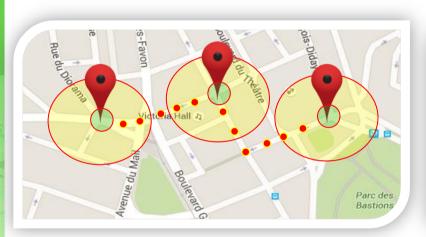
Multi-path transmission

Add more antennas

Add gateways


Add antenna diversity

Send more packets


More transmissions More channels

Improve Solver

Machine learning
Statistical enhancements
Tracking/predictive map matching

Live Trial Accuracy

Mean Rural accuracy
Mean Urban accuracy

20-50 meters 120-200 meters

Optimizations

03

Antenna Diversity

Best effect on weakest signals Average 20% improvement

Gateway Diversity

Average 25% improvement from 3 to 4

Shape of Grid

Regular spaced grid improves results by 25% or more

01

04

Frequency Diversity

On average 50% improvement with repetition of packets

Nov 2016

ITSF, Prague

02

Rich Lansdowne, Semtech Corp.

Importance of Time-base

Local consistency

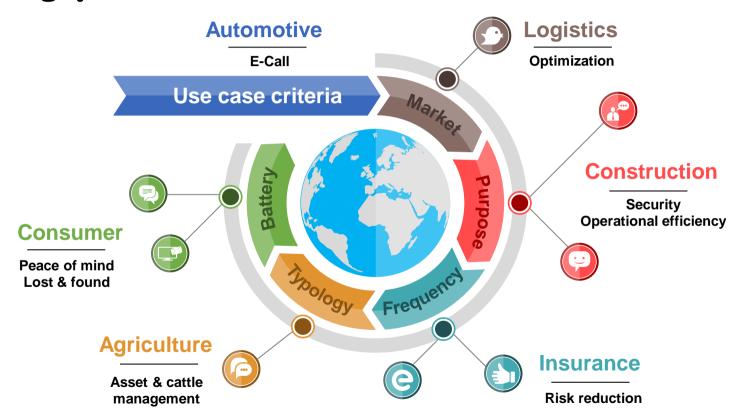
Absolute time is not an issue, local consistency is important

Robust accuracy

3ns = 1 Metre
Reduced by processing
but GNSS close to 30ns
locally is good

Mitigate vulnerabilities

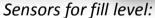
Sub 100ns solution required avoiding GNSS reliance

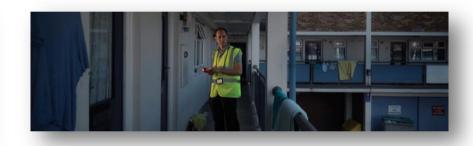


Nov 2016

ITSF, Prague

Rich Lansdowne, Semtech Corp.


Typical Use Cases



Smart City: From Street lights & traffic lights, to Waste, Recycling & Environmental?

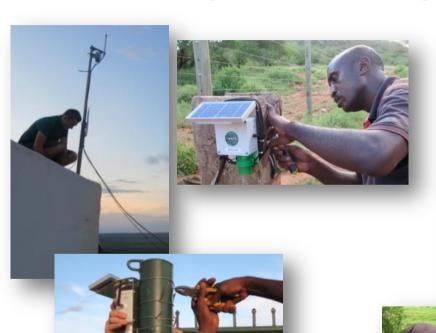
- Optimise emptying time
- Geolocation aids route optimization
- Improved public safety & street scene
- Optimise to location/time/date/event

Lone worker alarms:

- Never need charging
- Built into uniform
- Fall detection, Panic button
- Geolocation the casualty

The 'internet of cows'

From collars to permanent implants, the connected cow gets a lot of attention:


- Increased milk & calf yield
- Reduced A.I. costs
- Reduced mortality rate
- Reduced theft & insurance costs

Saving Endangered Species

(Images courtesy of www.theinternetoflife.com) Rich Lansdowne, Semtech Corp.

Saving Endangered Species

Installing a GPS based sensor in a rhino's horn.

GPS sensor with LoRaWAN: update every 45 mins for 2 years.

A GPS-free LoRaWAN sensor would update every 5 minutes for 10 years!

(Images courtesy of www.theinternetoflife.com)
Rich Lansdowne, Semtech Corp.

Call to Arms

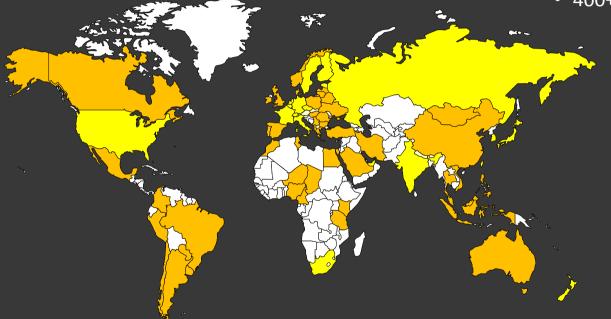
1. Robust Sub 100ns (<30 :) Sync

2. Wireless options as well as cabled

References

LoRaWAN: The LoRa Alliance <u>www.lora-alliance.org</u>

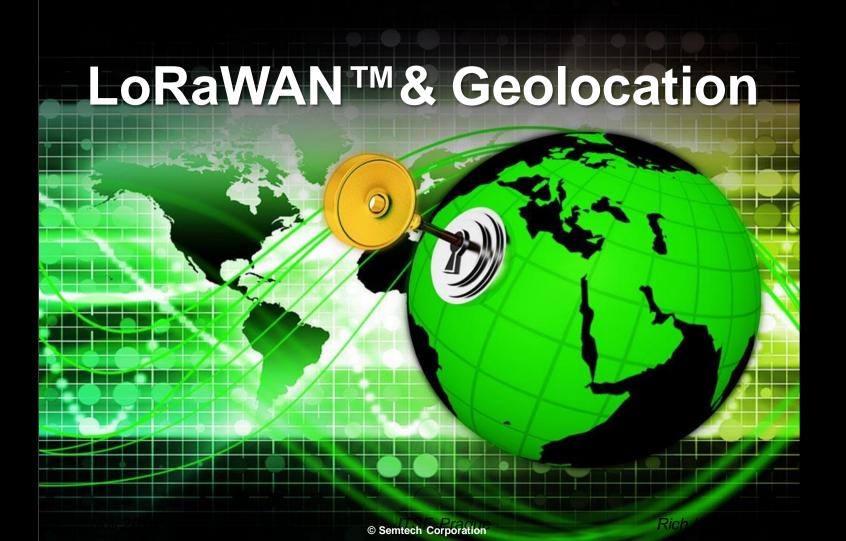
Internet of Cows: Invenit/Clickey, <u>www.clickey.eu</u>


Rhino Preservation: The Internet of Life <u>www.theinternetoflife.com</u>

Wildlife Preservation: Shadowview Foundation <u>www.shadowview.org</u>

Nov 2016 ITSF, Prague Rich Lansdowne, Semtech Corp.

Countries – LoRaWAN Networks


- 28 Publically Announced Operators
 150+ on-going trials & city deployments
- 400+ members in the Alliance

Legend:

- Publicly Announced
- Other deployments

