

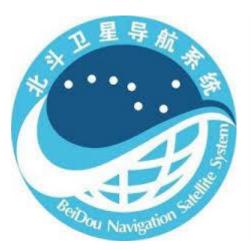


# **GNSS Time Reference**

**Haroon Muhammad** 

Senior Product Manager

Haroon\_Muhammad@Trimble.com


ITSF2015 – November 2015, Edinburgh UK

# **Agenda**

- Status of constellation
- Time references
- Reliability and accuracy
- Conclusion









The status of the four Global constellations

# THE GNSS NETWORKS



### **The Status of Constellations**

| Constellation                          | GPS                                                                            | GLONASS                                        | BEIDOU                               | GALILEO                                         |
|----------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------------------------------|
| Status                                 | Operational                                                                    | Operational                                    | Partial Operation                    | Partial Operation                               |
| Satellites                             | 31 (24 available<br>95% of the time)                                           | 28 (24 required for global coverage)           | 20 (35 planned, 27 for full coverage | 10 (30 planned for global coverage)             |
| Frequency                              | L1 1575.42 MHz<br>L2 1227.60 MHz                                               | G1 1602 MHz<br>G2 1246 MHz                     | B1 1561 MHz<br>B2 1207 MHz           | E1 1575.42 MHz<br>E6 1278.75 MHz                |
| Coding                                 | CDMA                                                                           | FDMA                                           | CDMA                                 | CDMA                                            |
| Performance<br>Standard<br>(Published) | C/A code<br>~ 5-10m (95%)                                                      | SP Signal<br>~4-7m (95%)                       | Public Signal<br>25m (95%)           | Open Service<br>~15m (95%)                      |
| Modernization<br>Plan                  | Modernization SV (as of Nov 2013) GPS-IIR-M (with L2CS) GPS IIF (w/ L2CS & L5) | Modernization plan add CDMA & triple frequency | Global FOC<br>(Phase III) by 2020    | Full Operational<br>Capability (FOC)<br>by 2020 |

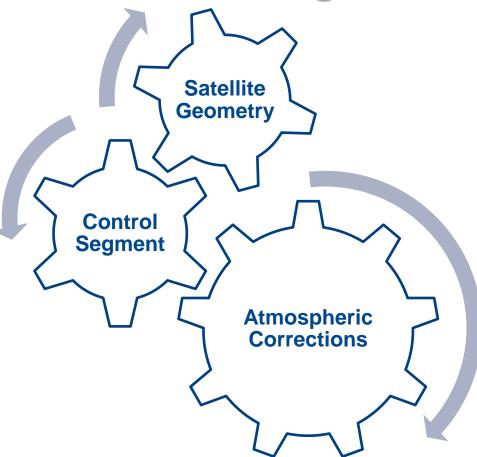


# TIME REFERENCE



Photo: www.nist.gov

#### **GNSS Time Formats**


| Constellation                | GPS                                                                                                                       | GLONASS                                       | BEIDOU                                                          | GALILEO                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| Launch                       | First launch 1978<br>Fully operational 1995                                                                               | First launch 1982<br>Fully operational 2011   | First launch 2000<br>Fully operational 2020                     | First launch 2011<br>Fully operational 2020                        |
| Constellation<br>Time Format | GPS Time Continuous timescale, starting on Jan 6, 1980                                                                    | GLONASS Time                                  | BeiDou Time<br>Continuous timescale,<br>starting on Jan 1, 2006 | Galileo Time,<br>Continuous timescale,<br>starting on Aug 22, 1999 |
| Standard<br>Time Format      | UTC (USNO)                                                                                                                | UTC (SU)                                      | UTC (NTSC)                                                      | TAI                                                                |
| Relation with UTC            | UTC = GPS ± Leap<br>Second                                                                                                | GLONASS Time = UTC (SU) + 3 hours             | BDT = UTC (NTSC)                                                | UTC = GST +<br>ΔSeconds                                            |
| Relation with other GNSS     | No conversion to<br>other GNSS system<br>New message type-35 in<br>ICD version G. For time<br>offset only for GLO and GAL | Currently no conversion to other GNSS systems | Other GNSS time can be derived from Beidou                      | Other GNSS time can be derived from Galileo                        |



# **PERFORMANCE**

**Position & Time Accuracy** 

## Factors affecting GNSS accuracy



There are a few things that effect GNSS position and timing accuracy. Significant are:

- Better Geometry yields a better survey position
- Accuracy and maintenance of uploaded ephemeris, almanac, clock bias, and frequency bias
- Atmospheric corrections



#### **GPS vs. GLONASS**

### Satellite Geometry

- Constellation geometry gives GPS an advantage over GLONASS
- GLONASS has better constellation geometry on higher (polar) latitudes

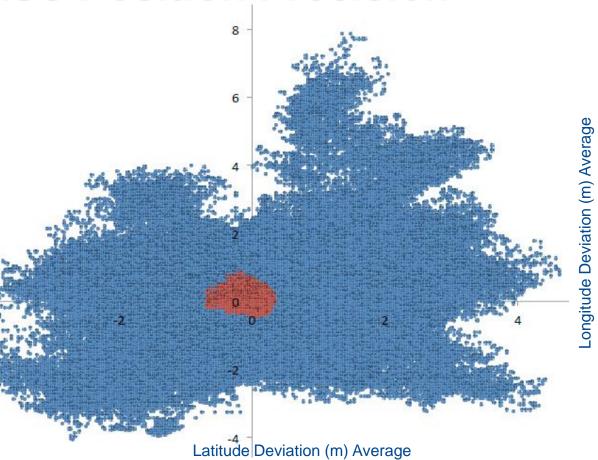
# Control Segment

- GPS has 19 Control stations in 14 countries
- GLONASS has Control stations in the former Soviet Union territory and Brazil

# Atmospheric Corrections

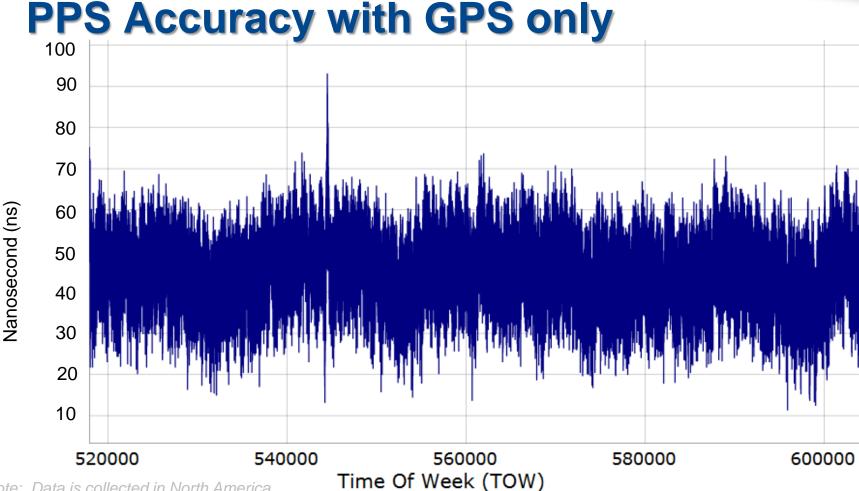
- GPS transmits ionospheric corrections
- GLONASS does not transmit any ionospheric corrections

The GPS constellation provides better position & timing accuracy than GLONASS. **GLONASS** accuracy


GLONASS accuracy can be improved by using GPS satellites in computations



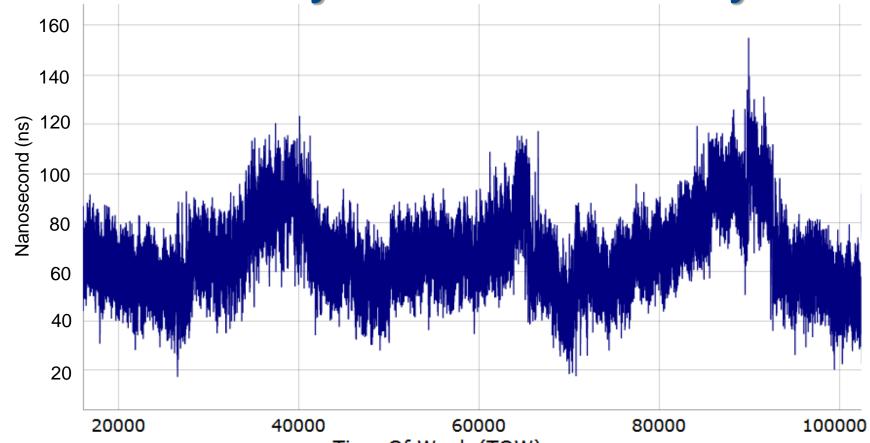
#### **GPS vs GLONASS Position Precision**


This is a 48-hours data of two receivers: one in GPS-only mode other in GLONASS-only mode.

The blue area is GLONASS position fixes and red area is GPS position fixes.



Note: Data is collected in North America

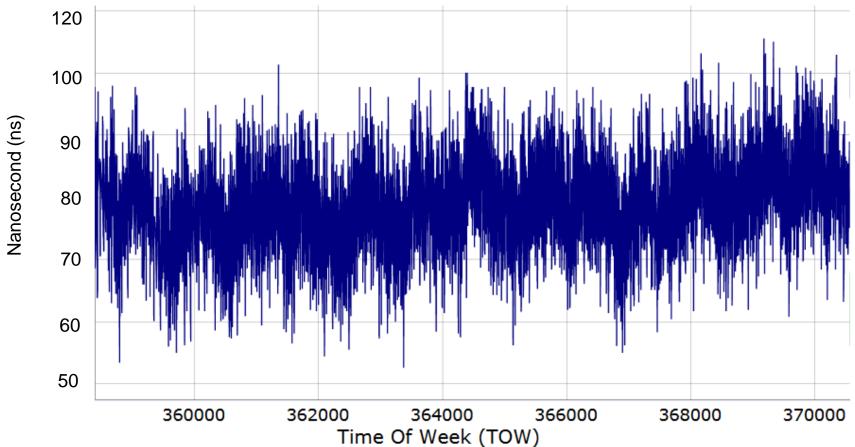





Data is collected in North America



PPS Accuracy with GLONASS only




Note: Data is collected in North America

Time Of Week (TOW)



## **PPS Accuracy with GPS & GLONASS**



Note: Data is collected in North America



#### Conclusion

- Position accuracy translates into time accuracy
- GPS control segments maintain very tight tolerances and, due to additional control segments, GPS currently provides the most reliable and accurate worldwide coverage
- Adding GPS satellites to any timing solution (GLONASS/Beidou) will improve the accuracy of the time reference