Secure PTP - Protecting PTP with MACsec without losing accuracy VITESSE

Making next-generation networks a reality.

ITSF 2014
Thomas Joergensen
Vitesse Semiconductor

Security issues with PTP

- ▶ It is possible to "spoof time" and attack PTP if the PTP traffic is unencrypted/unprotected
- Small cells are often placed in areas that do not provide physical protection
- ► Enterprise femtocells may use an existing Ethernet network in the buildings for both user traffic and PTP timing
- ▶ PTP for frequency (G.8265.1) is often running inside tunnels (EVCs) along with the customer traffic and the customer traffic must be encrypted
- ▶ There is no standard security protocol specified for PTP
 - Annex K in IEEE1588-2008 is known to be flawed and will be deprecated in next revision of the standard
- ▶ Many government regulations require information to be encrypted
- ▶ 3GPP TS 33.320 requires that the time delivery to Home Node B must be delivered over a secure backhaul link.

Time Security Networks Operate on Precision

Mobile Communications

What if Network Time is Compromised?

- No access to network
- Calls will drop
- Poor coverage and throughput

Smart Energy

Time errors can trigger faults in power grid

Financial / Trading

 Smart Order routing for large trades requiring simultaneous execution on multiple exchanges may not function properly

Low latency security in conjunction with nanosecond-level time stamp synchronization is critical to network infrastructure

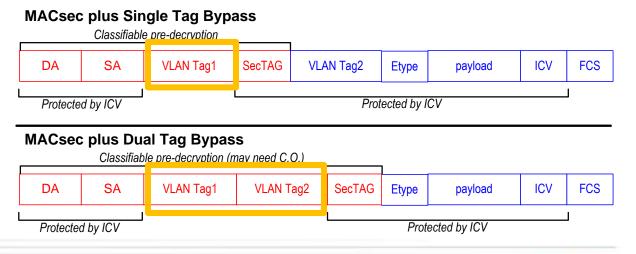
What about IPsec?

- ▶ IPsec is sometimes used today to protect the mobile user traffic
- ▶ But...
 - ▶ It can only protect IP traffic and G.8275.1 uses PTP over Ethernet directly
 - IPsec prevents the use of 1-step hardware timestamping as PTPoIP is in the IP payload
 - ▶ IPsec encryption/decryption at the end of the EVC creates very large Packet Delay Variation
 - PDV happens outside the EVC and thereby not part of the SLA for the EVC connection
 - Large PDV caused by IPsec decryption is preventing accurate timestamping after decryption

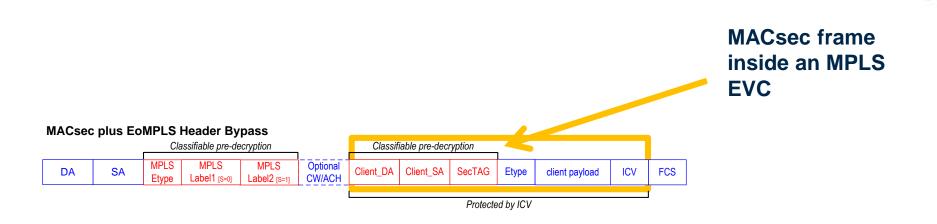
MACsec 101

- ▶ MACsec is a layer 2 security protocol IEEE802.1AE
- ► Provides strong 128/256bit encryption or protection with using the GCM-AES cipher suite
- ▶ Uses IEEE802.1X for authentication
- ▶ MACsec protects against
 - Passive wiretapping
 - Masquerading (MAC address spoofing)
 - Man-in-the-Middle attacks
 - Certain Denial-of-Service (DOS) attacks
- Designed for implementation in hardware (high bandwidth, low latency)
- ▶ Under consideration for next release of IEEE1588

MACsec Frame Format

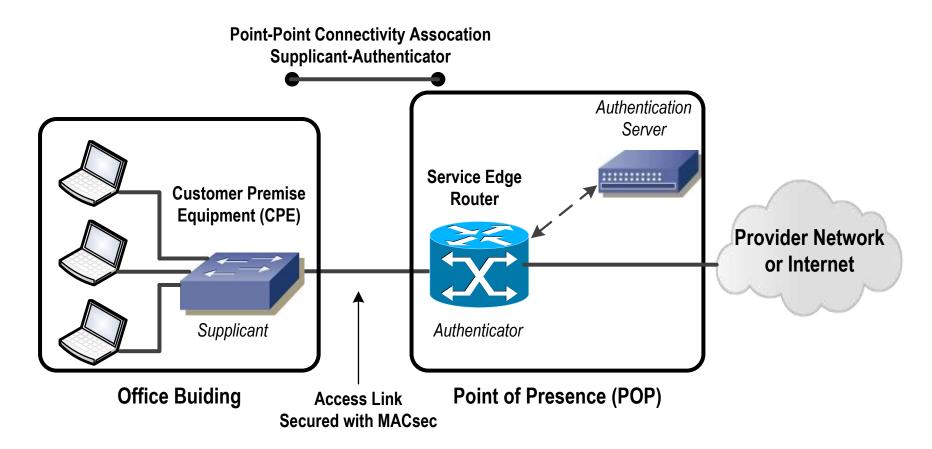

Untagged Ethernet Classifiable pre-encryption **FCS** DA SA Etype payload Standard MACsec format Classifiable pre-decryption **ICV FCS** DA SA SecTAG Etype payload

Protected by ICV

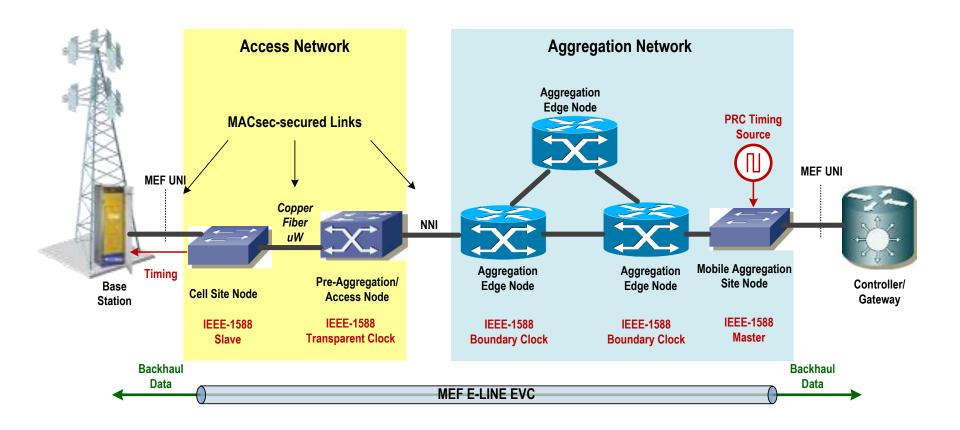

MACsec adds a SecTAG after the source address and an ICV field after the payload, protecting the complete frame

Provider Bridges can add/remove VLAN tags to the encrypted frame.

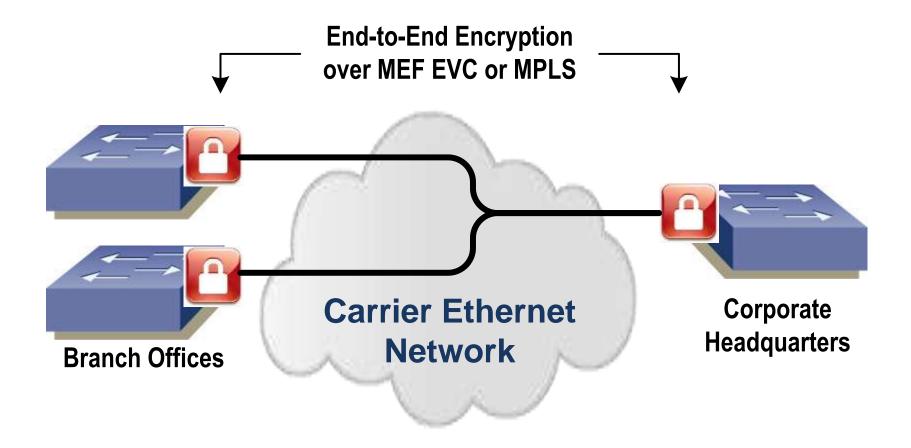
Some devices support bypassing existing VLAN tags when performing MACsec encryption/decryption


MACsec inside an MPLS EVC

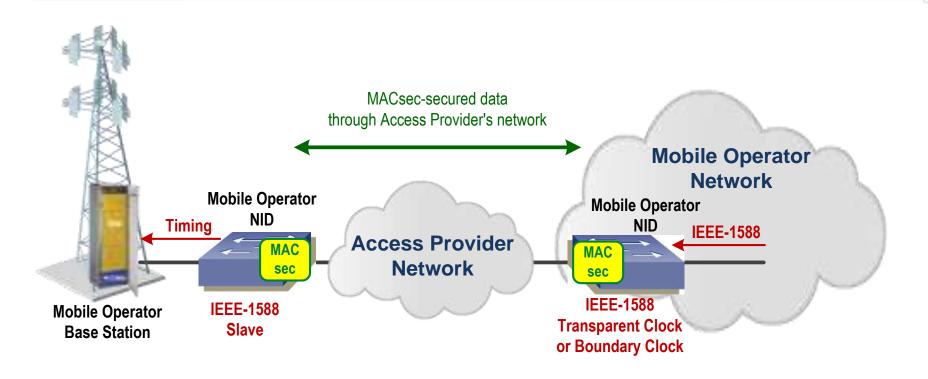
Protects MEF EVC payload while allowing network to push/pop VLAN tags and MPLS labels, as well as mark the frames for SLA-compliance (policing result)



MACsec is normally point-to-point



MACsec in Mobile Backhaul with IEEE-1588



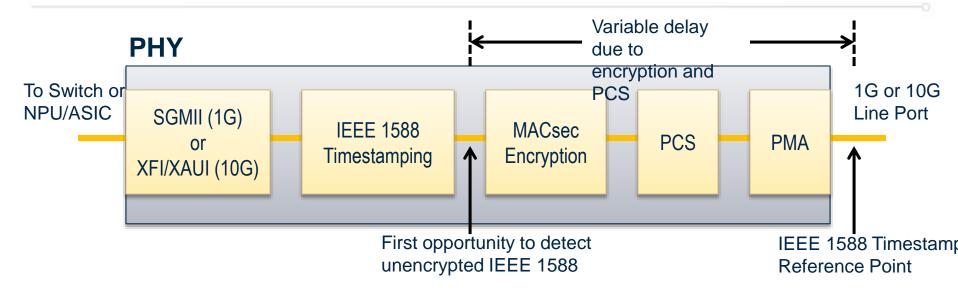
MACsec can be used to protect EVCs

MACsec for EVC protection through access provider network

PTP phase over PTP-unaware/partially aware network – G.8275.2 (future)

PTP frequency over PTP-unaware network – G.8265.1

Customer data can be protected using the same MACsec protected EVC


PTP and MACsec working together

- ▶ PTP-aware networks needs the ability to timestamp PTP frames on every port.
- ▶ MACsec protected networks encrypts/decrypts at the port/MAC
- ▶ By combining both functions in the same silicon it is possible to provide accurate timestamping of PTP frames
- ▶ Only solution to provide PTP 1-step operation
 - Significantly reduces the software load

Maintaining 1588 Accuracy with MACsec

- MACsec processing introduces highly variable delays, standard MACsec destroys 1588 accuracy
 - ▶ This is true even if 1588 remains unencrypted while other data is encrypted.

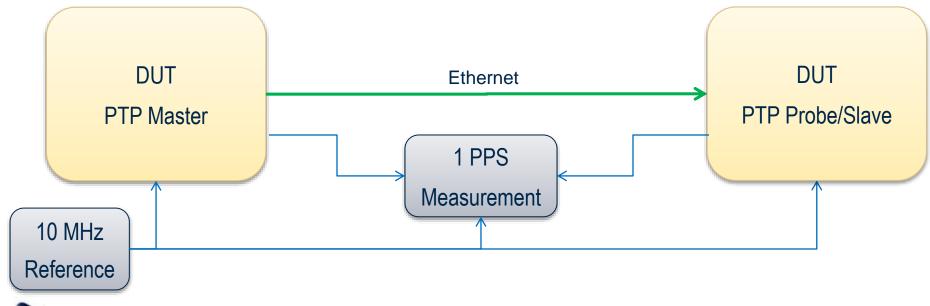
 Example: If the 1588 packet is immediately behind a packet that will be encrypted later, the encrypted packet grows by 24-32 bytes, delaying the 1588 packet by 192-256 ns compared to the case where the 1588 packet is behind a packet that won't be encrypted.

Test Results

Making next-generation networks a reality.

VSC5621 Evaluation Board

- ▶ Complete Carrier Ethernet Switch with software
 - Uses:
 - VSC7460 Carrier Ethernet
 Switch
 - VSC8584 Quad1000BASE-T PHY with1588 and MACsec
 - VSC8490 Dual 10G PHY with 1588 and MACSec
- ► FIPS197 certified 256 bit MACsec solution



Test Setup – Timestamp Accuracy

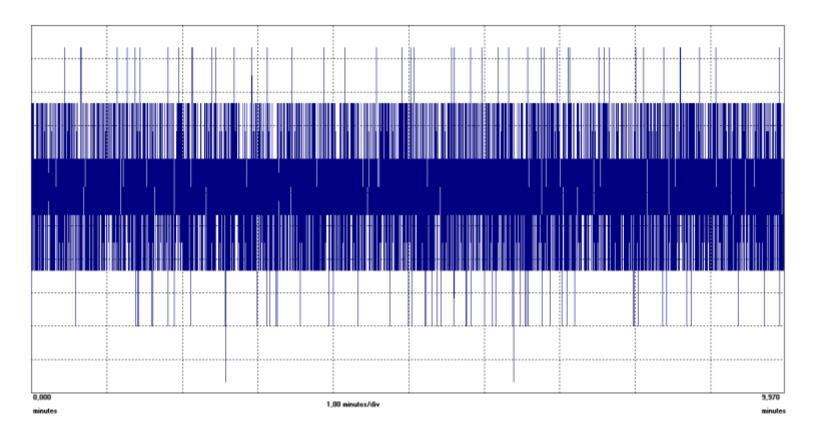
- PTP Master DUT and PTP Slave/Probe DUT is frequency locked to the same reference clock
- One DUT is configured in PTP probe (PTP slave) mode to measure received timestamp accuracy from PTP Master compared to the internal time in the DUT
 - ▶ Test results will show the combined accuracy of the DUT probe (down to 1 ns depending on the DUT) and the PTP Master
 - ▶ DUT probe produces PDV result data in Symmetricom Timemonitor format
 - ▶ DUT in slave mode output 1PPS and allows measurement of 1PPS performance.

VSC8490 Test Result

▶ Easily meets the Class B limit

▶ See details in the following slides

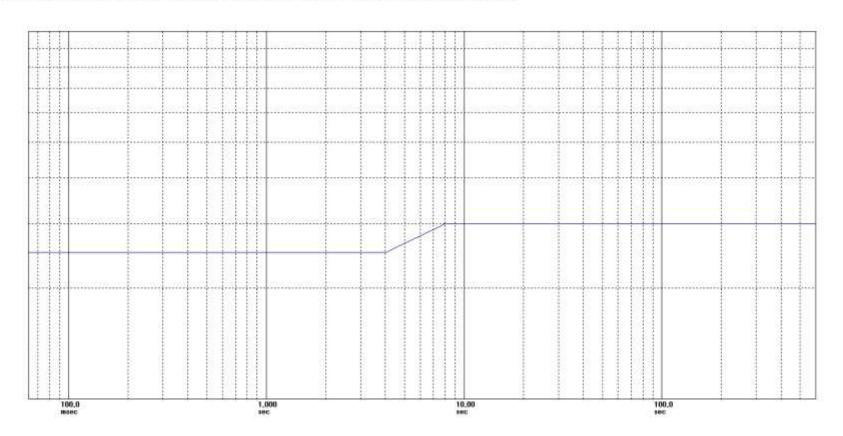
VSC8490	Test result w/o MACsec	Test result with MACsec	Class B limit
Constant Time Error, cTE	-3.3 ns	2.9 ns	20 ns
Dynamic Time Error MTIE (filtered)	157 ps	420 ps	40 ns
Dynamic Time Error MTIE (unfiltered)	4 ns	4 ns	
Dynamic Time Error TDEV (filtered)	14 ps	35 ps	4 ns
Dynamic Time Error TDEV (unfiltered)	460 ps	400 ps	
Maximum Time Error (unfiltered)	5.0ns	4.5 ns	70 ns


VSC8490 TE(t) - Unfiltered

▶ LAN mode without MACsec enabled

Symmetricom TimeMonitor Analyzer
Phase deviation in units of time; Fs=15,90 Hz; Fo=10,000000 MHz; 1970-01-01 00:06:21
Two-Way Normalized Offset Phase; Samples: Sizi, Initial phase offset: -3,50000 nsec
Vitusse Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; Master(UUID: 0001C1FFFExxxxxx; Probe(P; n.a.; Probe(UUID: 0001c1FFFExxxxxx; Probe(P; n.a.))

psec/div

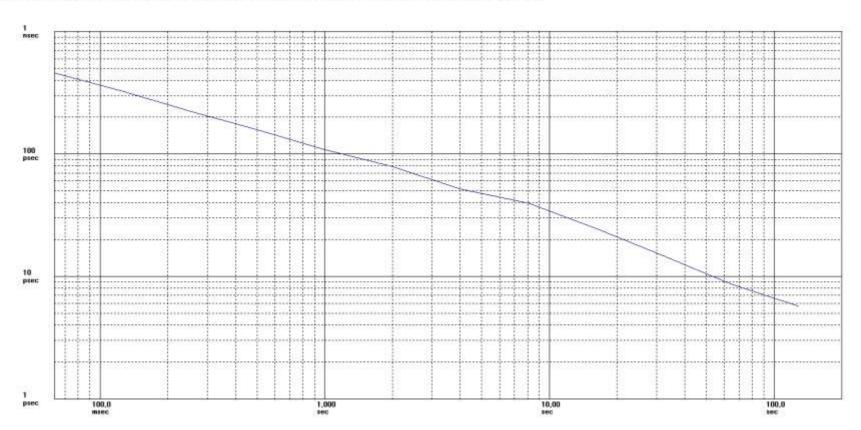


-5,10

VSC8490 dTE MTIE - Unfiltered

► LAN mode without MACsec enabled – 4 ns

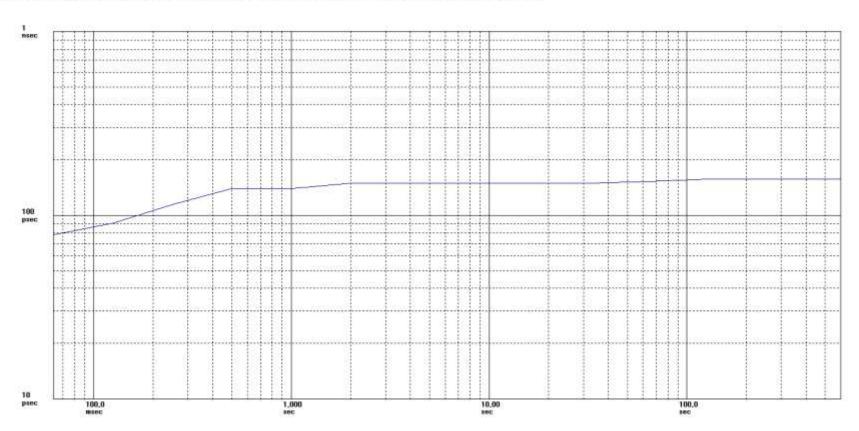
Symmetricom TimeMonitor Analyzer MTIE; Fo=10,00 MHz; Fs=15,90 Hz; 1970-01-01_00:06:21 Two-Way Normalized Offset Phase; Samples: 9513; Initial phase offset: -3,50000 nsec Viterze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxx; MasterIP n.a.; ProbeUUID: 0001c1FFFExxxxx; ProbeIP: n.a.



VSC8490 dTE TDEV - Unfiltered

► LAN mode without MACsec enabled – 460 ps

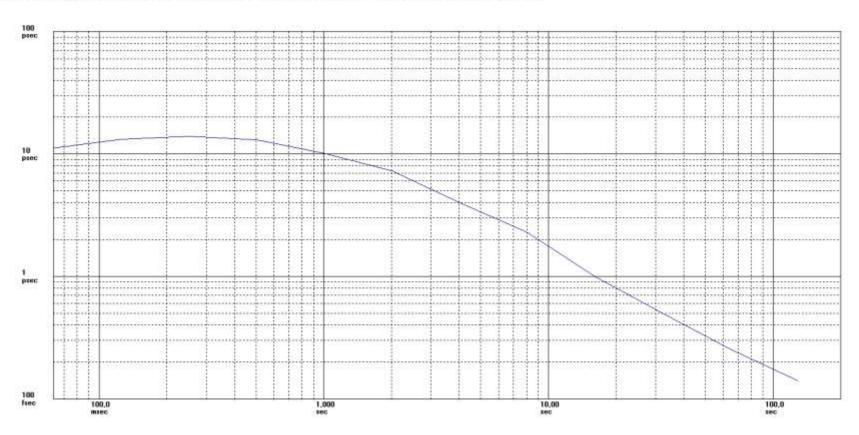
Symmetricom TimeMonitor Analyzer TDEV; Fo-10,00 MHz; Fs-15,90 Hz; 1970-01-01 00:06:21 Two-Way Normalized Offset Phase; Samples: 9513; Initial phase offset: -3,50000 nsec Viterze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxx; MasterIP n.a.; ProbeUUID: 0001c1FFFExxxxx; ProbeIP: n.a.



VSC8490 dTE MTIE - Filtered

► LAN mode without MACsec enabled – 157 ps

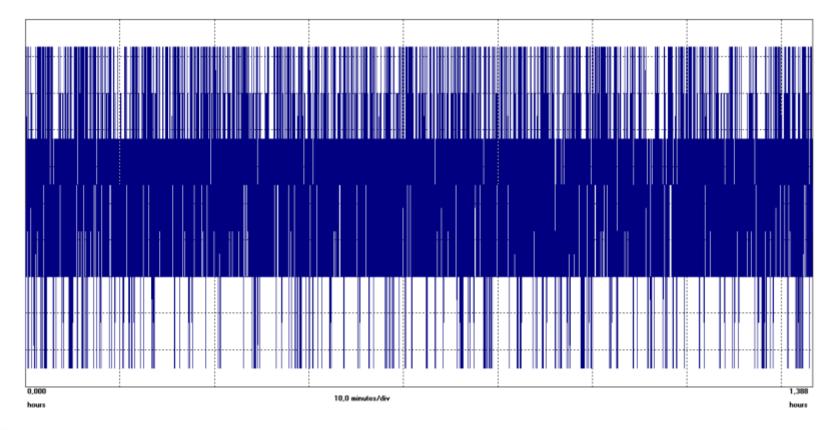
Symmetricom TimeMonitor Analyzer MTIE; Fo-10,00 MHz; Fs-15,90 Hz; 1970-01-01 00:06:21 Two-Way Normalized Offset Phase; Samples: 9513; Initial phase offset: -3,50000 nsec Vitezze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxx; MasterP; n.a.; ProbeUUID: 0001c1FFFExxxxx; ProbeIP; n.a.



VSC8490 dTE TDEV - Filtered

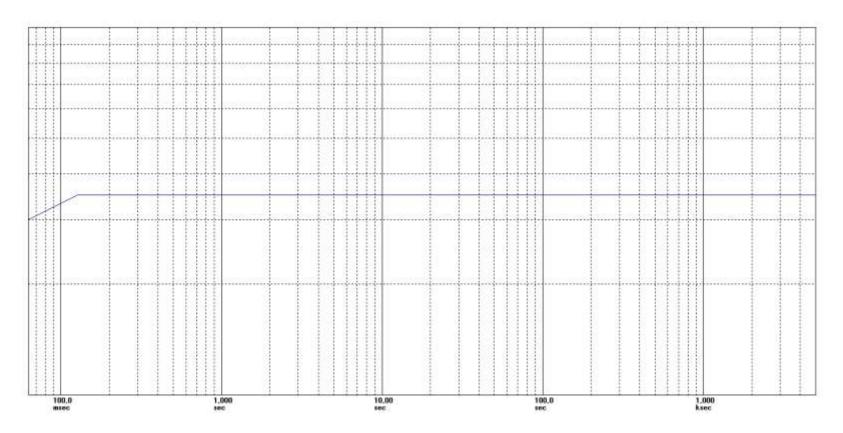
► LAN mode without MACsec enabled – 14 ps

Symmetricom TimeMonitor Analyzer TDEV; Fo-10,00 MHz; Fs-15,90 Hz; 1970-01-01 00:06:21 Two-Way Normalized Offset Phase; Samples: 9513; Initial phase offset: -3,50000 nsec Viterze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxx; MasterIP n.a.; ProbeUUID: 0001c1FFFExxxxx; ProbeIP: n.a.


VSC8490 TE(t) - Unfiltered

▶ LAN mode with MACsec enabled

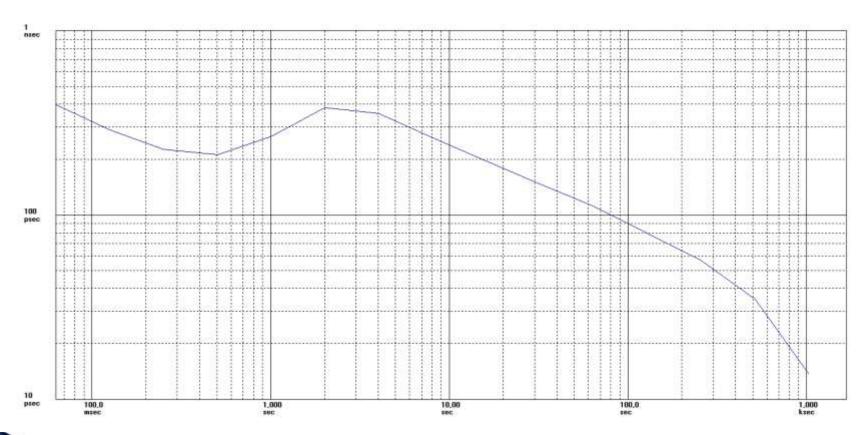
Symmetricom TimeMonitor Analyzer
Phane deviation i units of time; Fz=15,90 Hz; Fo=10,000000 MHz; 1970-01-01 -00:16:25
Two-Way Normalized Offset Phane; Samples: 79484; Initial phane offset: 1,50000 nsec
Vitesse Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxxx; MasterIP; n.a.; ProbeUUID: 0001c1FFFExxxxxx; ProbeIP; n.a.


V

VSC8490 dTE MTIE - Unfiltered

▶ LAN mode with MACsec enabled – 4 ns

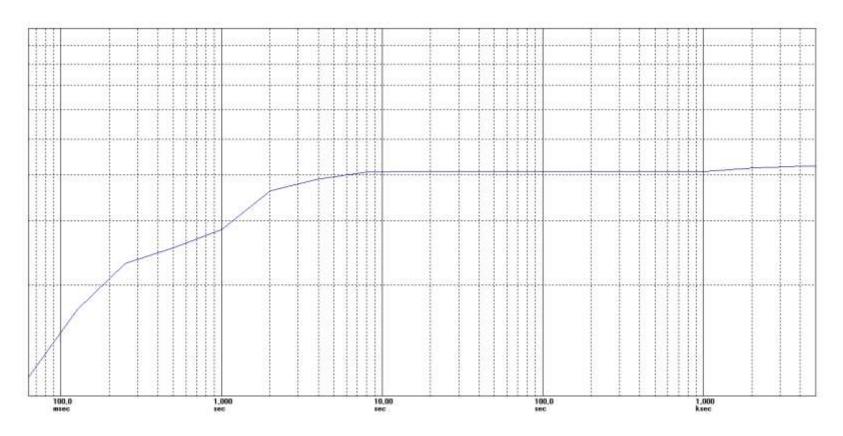
Symmetricom TimeMonitor Analyzer MTIE; Fo=10,00 MHz; Fs=15,90 Hz; 1970-01-01_00:16:25 Two-Way Normalized Offset Phase: Samples: 79484; Initial phase offset: 1,50000 nsec Viterze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxx; MasterIP: n.a.; ProbeUUID: 0001c1FFFExxxxx; ProbeIP: n.a.



VSC8490 dTE TDEV - Unfiltered

► LAN mode with MACsec enabled – 400 ps

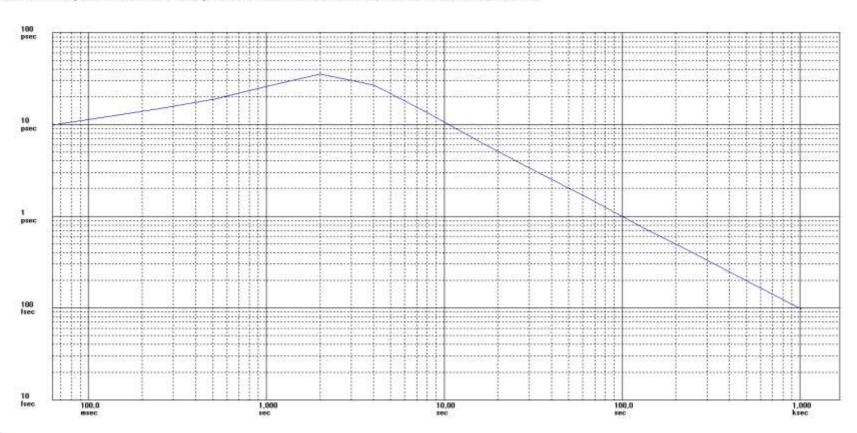
Symmetricom TimeMonitor Analyzer TDEV; Fo=10,00 MHz; Fz=15,90 Hz; 1970-01-01 -00:16:25 Two-Way Normalized Offset Phase; Samples: 79484; Initial phase offset: 1,50008 nsec Vitezze Test Probe/1588 Timestamp Data/Transmit and receive Timestamp: MasterUUID: 0001C1FFFExxxxxx; MasterSP: n.a.; ProbeUUID: 0001c1FFFExxxxxx; ProbeIP: n.a.



VSC8490 dTE MTIE - Filtered

► LAN mode with MACsec enabled – 420 ps

Symmetricom TimeMonitor Analyzer
MTIE; Fo-10,00 MHz; Fs-15,90 Hz; 1970-01-01 00:16:25
Two-Way Normalized Office Phose; Samples: 79404; Initial phose offset 1,50000 nsec
Vitezza Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; Master/UIID: 0001C1FFFExxxxxx; Master/P; n.a.; Probe/UIID: 0001c1FFFExxxxxx; Probe/P; n.a.



VSC8490 dTE TDEV - Filtered

▶ LAN mode with MACsec enabled – 35 ps

Symmetricom TimeMonitor Analyzer
TDEV; Fo-10,00 MHz; Fs-15,90 Hz; 1970-01-01: 00:16:25
Two-Way Normalized Offset Phase; Samples: 79484; Initial phase offset: 1,50000 sec
Vitezar Test Probe/1588 Timestamp Data/Transmit and receive Timestamp; MasterUUID: 0001C1FFFExxxxxx; MasterUP; n.a.; ProbeUUID: 0001c1FFFExxxxxx; ProbeIP; n.a.

Summary And Conclusions

- ▶ PTP is now being used to provide timing and synchronization with insufficient physical security
- ▶ Protecting the PTP traffic by means of encryption and/or integrity protection is needed.
- ▶ IPsec is often used for data traffic, but this is not a practical solution for accurate PTP transfer that needs hob-by-hop support.
- ▶ IPsec is not a good security solution for PTP due to the large and variable processing delays.
- ► MACsec is a layer 2 encryption protocol that is a perfect fit for protection of PTP traffic hob-by-hob, or end-to-end.
- ▶ It is shown how MACsec can be used to protect the PTP traffic without impacting the accuracy and how MACsec can be easily implemented in a systems architecture.

Thank You

Making next-generation networks a reality.

