

The Fundamental Need for Synchronization

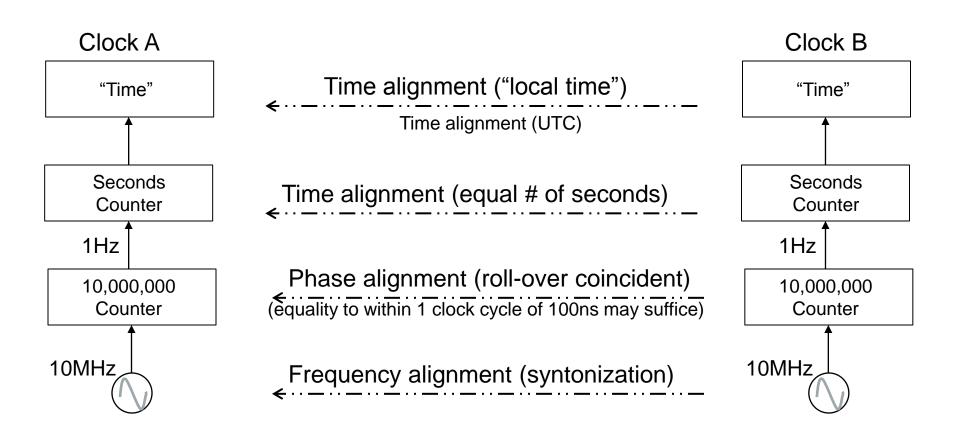
ITSF 2014, Budapest

Time to Learn – Tutorial Session

Kishan Shenoi (<u>kshenoi@Qulsar.com</u>)

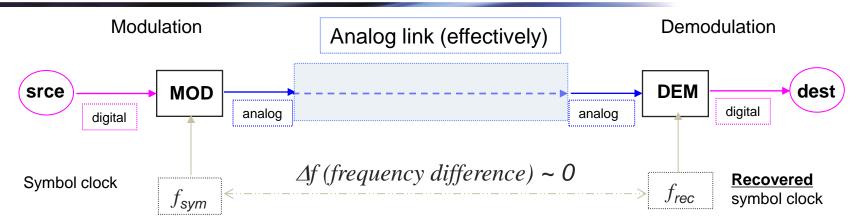
Qulsar, Inc., San Jose, California

Outline of Presentation



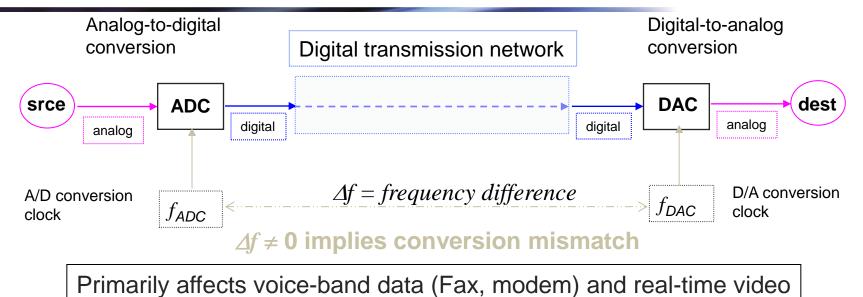
- Notion of Timing Alignment
- Timing Alignment is Fundamental in Telecommunications
 - Digital transmission requires symbol-timing alignment
 - Digital network require synchronization to emulate analog channels
 - Circuit Emulation (CBR over packet) requires timing alignment
 - Wireless (Cellular) requires timing alignment
 - Multimedia requires timing alignment
- Timing in Circuit-Switched (TDM) Networks
 - Synchronous time-division multiplexing
- ▶ Timing in Next Generation Networks
 - Impact of packet delay variation (PDV)
 - Principle of timing over packet networks
 - Introduction to packet (PDV) metrics

Time and Frequency



- Aligning two time clocks (synchronization) implies:
 - Make frequency B = frequency A (syntonization)
 - ► Make phase B = phase A (e.g. roll-over instant of 10⁷ counter)
 - Make seconds B = seconds A (elapsed time equal; same time origin)
 - Choose same formatting convention (and time-zone, etc.)

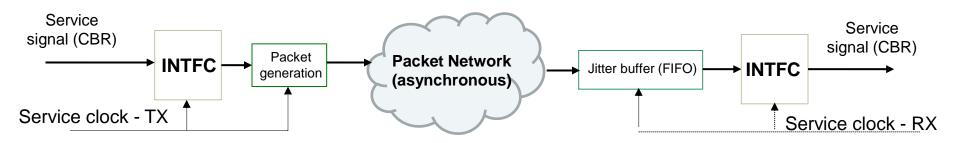
Data transmission schemes require synchronization



- Source/Destination: modulator and demodulator
- Transmitter (modulator) uses a particular symbol clock
 - ▶ receiver (demodulator) must extract this clock ($\Delta f \sim 0$) for proper data recovery
- The "Analog link" must, effectively, mimic an analog wire pair
 - ► Frequency translation (e.g. DSB-AM) is benign, Doppler (pitch modification effect, PME) is not benign (△f ~ Doppler)

10/14/2014

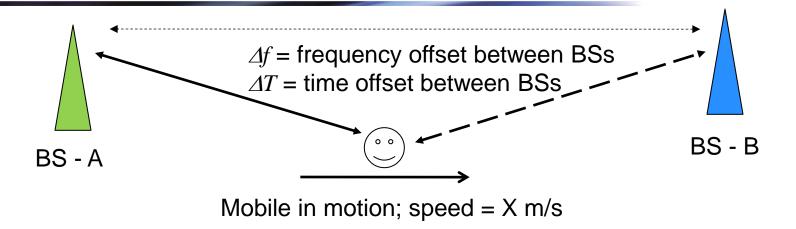
Timing Alignment required in Voice-Band Transmission



- Source/Destination : Voice/video/fax terminal
- The digital transmission network emulates an analog circuit (the original circuit emulation)
- Impact of frequency difference (△f):
 - Eventually buffers will overflow/underflow (e.g. slips) ("obvious")
 - Pitch Modification Effect (PME) (analogous to *Doppler*) makes recovered symbol clock ≠ transmit symbol clock (not so "obvious")
 - Recovered waveform ≠ original waveform (more than just additive noise)

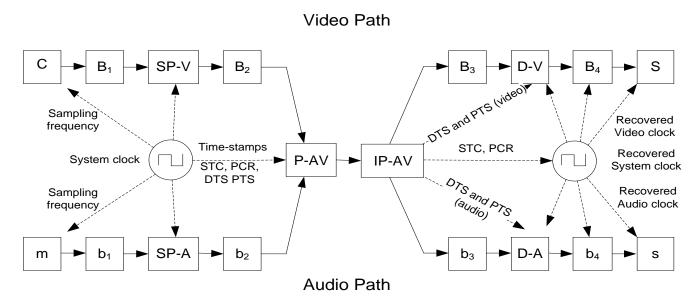
10/14/2014

Timing alignment implicit in Circuit Emulation



- Network impairments: delay, <u>packet-delay-variation (PDV)</u>, discarded packets
- Jitter buffer size: large enough to accommodate greatest (expected) packet-delay-variation. Packet loss concealment is not an option.
- Causes of packet "loss":
 - Network drops packets (bit errors, congestion)
 - Jitter buffer empty/full (excessive packet-delay-variation)
- Key to <u>Circuit Emulation</u>:
 - Ensure packet loss is (essentially) zero.
 - Make RX and TX service clocks "equal".
 - Note: If RX ≠ TX then jitter buffer is going to overflow/underflow

Timing Alignment in Wireless

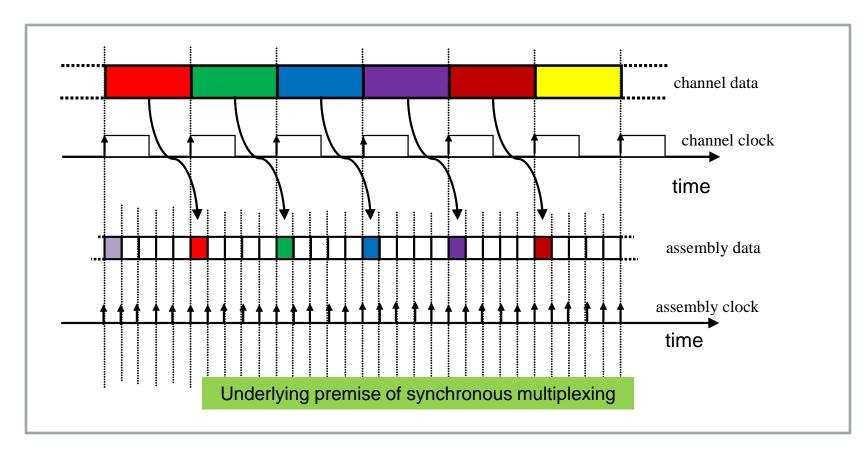


- When hand-over occurs, the mobile must reacquire carrier frequency
 - Mobile in motion (X m/s) introduces a Doppler shift (X/c)
 - Loop bandwidth wide enough to handle (∆f + X/c +LO) (LO = local oscillator offset)
 - Loop bandwidth should be small from a noise rejection viewpoint
 - Large ∆f compromises the reliability of hand-over
- TDD networks <u>require</u> time/phase alignment between A & B
- LTE-TDD & LTE-Advanced require △T to be small (microsec) for providing the more bandwidth intensive features

Timing Alignment in Multimedia

- Frequency offset (wander) between audio and video sampling results in loss of lip-sync
- Frequency offset (wander) between send-side and receive-side system clock results in freeze (video), breaks (audio), and possible loss of lipsync
- Audio and video streams could come from diverse sources requiring the sources to be synchronized to a common (global) reference

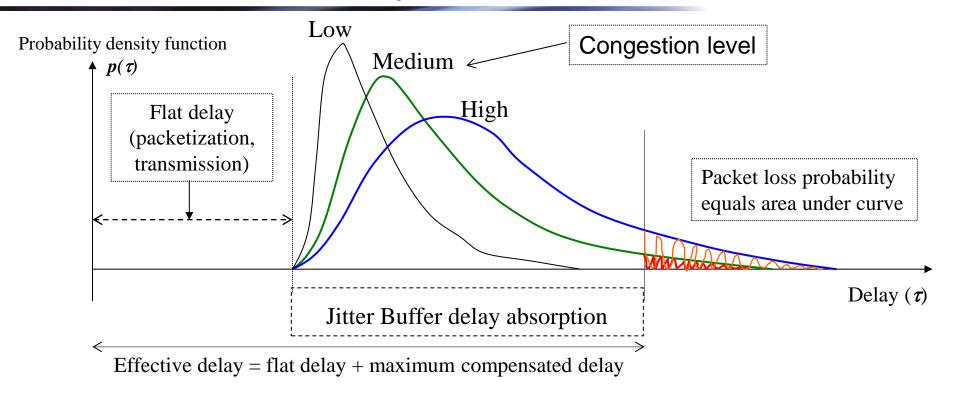
10/14/2014


Timing in TDM Networks

- Synchronization is essential for synchronous multiplexing
 - To avoid information loss
- Synchronous multiplexing assemblies are used as carriers of timing information (DS1/E1, SONET/SDH)
 - ▶ The recovered line clock is used as a reference for the BITS
 - ▶ The transmit signals must meet the "sync" mask for timing information
- Asynchronous multiplexing can preserve timing (up to a point) if done correctly
- Bearer signals (DS1/E1) in asynchronously multiplexed assemblies (e.g. DS1 in DS3) can be used as carriers of timing
 - Asynchronous multiplexing is done correctly
- DS1/E1 bearer signals in SONET/SDH are <u>not</u> suitable as carriers of (good) timing
 - SONET/SDH encapsulation of DS1/E1 was done in a way that protects data but not (good) timing information

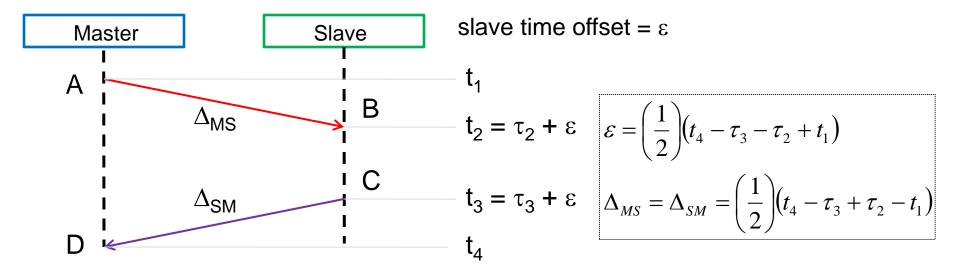
Synchronous Multiplexing

- Predetermined (rigid) ratio between channel clock and assembly clock
- 1-to-1 correspondence between channel bits and allowed bit positions
- Fractional frequency difference between channel and assembly clocks = 0


Timing Issues in Next Generation Networks

- Next generation networks are based on packet switching as opposed to circuit-switched (i.e. based on TDM)
 - Significant impact of variable delay (packet delay variation)
- Timing requirements remain.
 - Going "IP" does not mean that real-time services no longer need synchronization!
- Transition Phase:
 - Hybrid Networks (IP/TDM islands)
 - Circuit Emulation
- Timing over Packet Networks (packet-based methods)
 - PTP, NTP, adaptive clock recovery
- Monitoring and Testing
 - Metrics for packet-based timing methods (quantifying PDV)

Impact of Packet Delay Variation – VoIP example



- Jitter buffer size: trade-off between latency and packet loss
 - Minimize latency (delay) for voice calls
 - Minimize packet loss for data (voice-band modem) calls
- "Adaptive" jitter buffer techniques adjust buffer size to match PDV
 - Introduce delay for "faster" packets
 - Frequency offset (wander) is a problem

Principles of Packet-based timing methods

- One exchange of packets (M-to-S and S-to-M) provides 4 time-stamps
 - Master knows t_1 and t_4 ; Slave knows τ_2 and τ_3
- t_x is correct time (master); τ_x is the slave's idea of time (offset of ε)
- Assumption: transit time from master-to-slave ($\Delta_{\rm MS}$) is equal to the transit time from slave-to-master ($\Delta_{\rm SM}$)
- "Errors" arise because the transit time is not the same from packet to packet (packet delay variation) and the path is not reciprocal ($\Delta_{SM} \neq \Delta_{MS}$)

PDV Metrics

- Metrics that quantify PDV and share light on the ability of slave clocks to properly recover timing (phase and/or frequency)
- General background principles:
 - Not every packet has "good" timing information. Excess PDV is best ignored ("packet selection").
 - ► For a given path, the floor delay is not load dependent ("lucky packet") though congestion may make it "unobservable".
 - Metrics often characterize the "floor behavior", quantifying:
 - Amplitude distribution (pdf) of the PDV to indicate the number of packets that are near the floor
 - the temporal/spectral characteristics of the PDV associated with these packets

Concluding Remarks

- Timing Alignment is Fundamental in Telecommunications
 - Digital transmission requires symbol-timing alignment
 - Digital network require synchronization to emulate analog channels
 - Circuit Emulation (CBR over packet) requires timing alignment
 - Wireless (Cellular) requires timing alignment
 - Multimedia requires timing alignment
- ▶ Timing in Circuit-Switched (TDM) Networks
 - Synchronous time-division multiplexing is based on streams being aligned in frequency
- Timing in Next Generation Networks
 - Packet-based timing transfer can be achieved by using time-stamped packets
 - Packet delay variation (PDV) adversely affects user Quality of Experience and quality of timing alignment in packet-based clocks

Questions?

Kishan Shenoi (kshenoi@Qulsar.com)