Tutorial: Time and Time Error

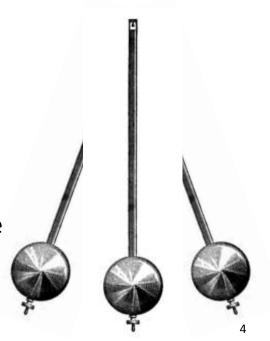
Calnex

www.calnexsol.com

Presentation overview

- What is time?
- What is time error?
- Characterising time error

What is Time?


What is Time?

- Time is a fundamental physical dimension
 - Allows ordering and scheduling of events
 - Enables sharing of resources (e.g. time division multiplexing)
- Passage of time measured by counting a regularly repeating event
 - Astronomical events, e.g. day/night, month, year

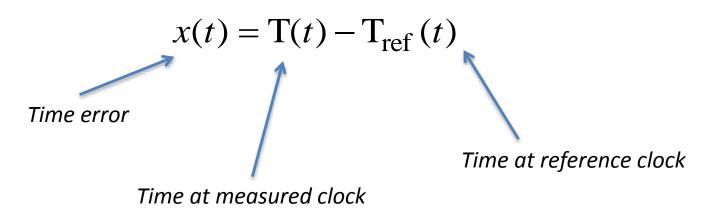
 Physical events, e.g. pendulum, quartz resonance or atomic transitions

Common Time

- Common time requires a reference point
 - Time at an instant has no meaning without a reference
 - Need to start counting from a common point, or epoch
 - Example: the Gregorian calendar counts years from the birth of Christ
- Legal and civil time based on UTC (Universal Time Co-ordinated)
 - Uses the Gregorian calendar epoch
 - Counts in step with TAI (atomic time)
 - Adjusted by leap seconds when required to match rotation of earth
 - Fixed offset added in each time zone to match daylight hours
- A time reference clock is a measurement device, counting at a constant frequency from a known epoch

Distributing Time

- Need to know how long the message takes to get to the destination
 - A letter might be usable for setting the date, e.g. next day delivery
 - A phone call could use to set hour/minute/seconds, e.g. speaking clock
 - A packet millisecond level accuracy
- GPS uses one-way messages
 - Uses knowledge of position and speed of light to estimate delay
- Send a return message
 - "Please check my time estimate"
 - Use round-trip delay to estimate one-way delay
 - Accuracy dependent on symmetrical delays
- Two way messaging used by both NTP and PTP



What is Time Error?

Time Error

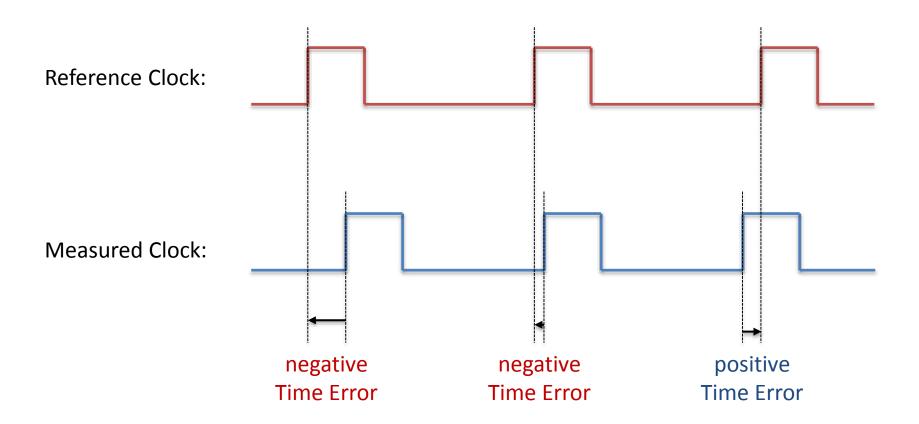
- The time error of a clock is the difference between the time indicated by that clock and a reference clock
- Always relative: has no meaning without a reference
- Defined by ITU-T Recommendation G.810:

Direction of Time Error – clocks

Reference Clock:

Measured Clock:

Time Error = 11.55 – 12.00 = – 5 minutes

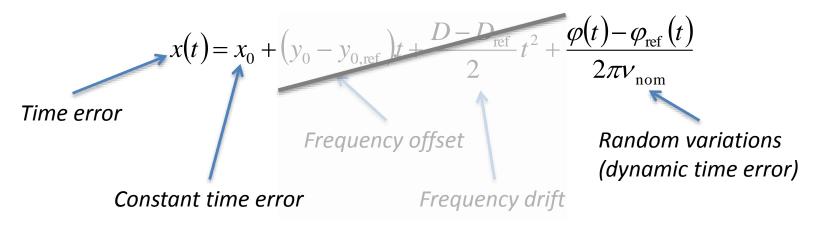


Time Error = 12.05 - 11.00 = + 5 minutes

Clock lags reference (slow, delayed): negative time error
Clock leads reference (fast, advanced): positive time error

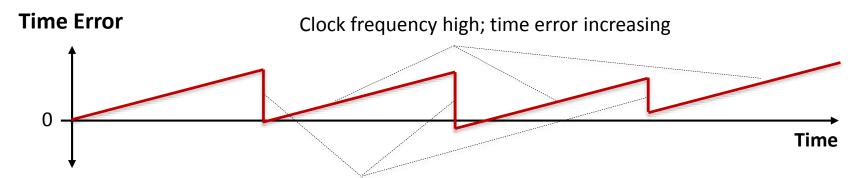
Direction of Time Error – signals

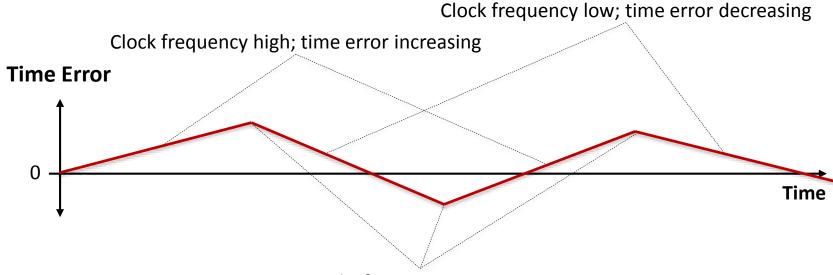
Signal lags reference (slow, delayed): negative time error Signal leads reference (fast, advanced): positive time error



Characterising Time Error

Time Error Function

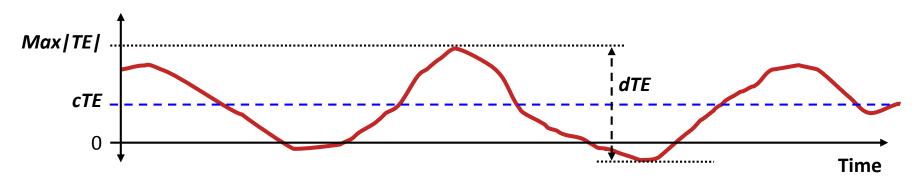

• Time error varies with time and can be expressed as a function:


- If clocks are locked in phase, frequency offset and drift are eliminated, and time error reduces to two components:
 - Constant time error or offset
 - Dynamic time error or random variations

Examples of Time Error Functions

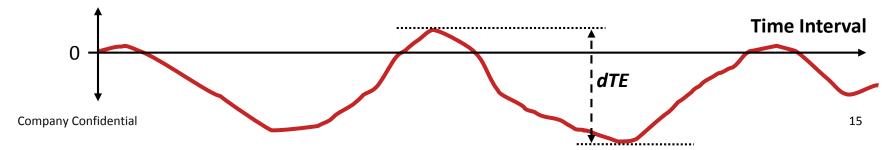
Periodic time corrections (not always accurate)

Measuring Time Error



- Need an accurate time reference!
 - Time has no meaning without a reference
- Maximum Absolute Time Error (Max | TE |) is the maximum distance from zero of the time error function
 - Sign doesn't matter: excursions may be positive or negative
- Constant Time Error (cTE) is the mean of the time error function
 - Period over which mean is measured is not specified; depends on signal
- Dynamic Time Error (dTE) is the change of the time error function
 - Effectively this is the phase or time wander
 - Analysed using MTIE and TDEV

Time Error and Time Interval Error (TIE)



Time Error measures the time difference between two clocks
 Time Error

- Time Interval Error measures change of time error
 - Starts at zero, then tracks the change of time error (dTE)

Time Interval Error

Time Error Specifications

Time error limits may be specified for:

- Equipment clock wander or noise generation
 - e.g. PRTC, T-GM, T-BC, T-TSC
- Network limits at reference points
 - e.g. output of T-GM, output of network, output of end equipment

Time error specified using a combination of three parameters:

- Max Absolute Time Error (max | TE |) specified in nanoseconds
- Constant Time Error (cTE) specified in nanoseconds
- Dynamic Time Error (dTE) specified with MTIE & TDEV masks

Not all parameters may be specified

- Network limit at output of network only specifies max|TE| and dTE
- Noise generation of a T-BC specifies max|TE|, cTE and dTE

INTEGRITY

TIME ERROR MEASUREMENTS REQUIRE TRUE PRECISION

Tim Frost tim.frost@calnexsol.com +44 (0) 1506-671-416

