

MOBILE BACKHAUL AND SYNCHRONIZATION FOR HETEROGENEOUS NETWORKS

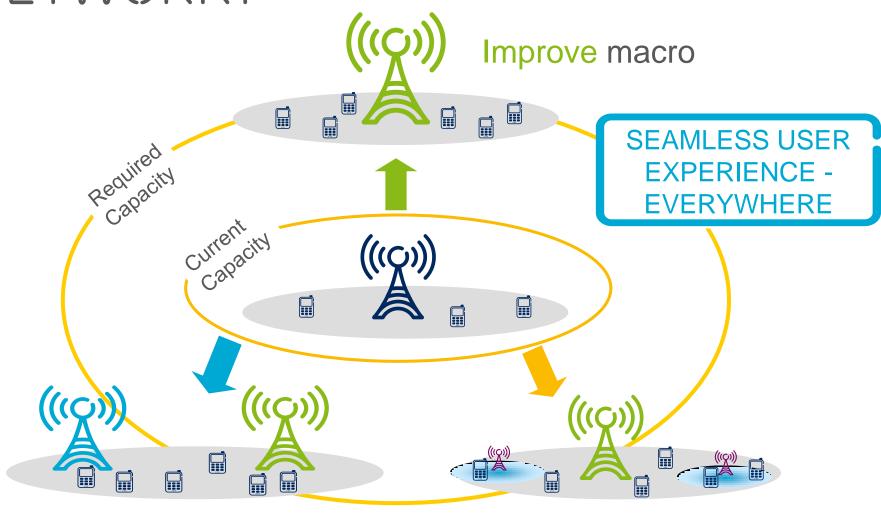
MARIE HOGAN

STRATEGIC PRODUCT MANAGER FOR LTE, ERICSSON


ITSF 2012: Time & Sync in Telecoms

6-8 November, Nice, France

HETEROGENOUS NETWORKS.....



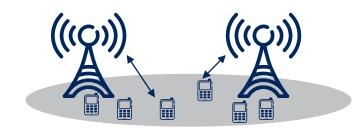
... PROVIDING SEAMLESS USER EXPERIENCE-EVERYWHERE

WHAT IS A HETEROGENEOUS NETWORK?

Densify macro

Add small cells

BACKHAUL IMPLICATIONS



1. Improve Macro

Backhaul modernization and capacity upgrades

2. Densify macro

Backhaul expansion and densification

3. Add Small Cells
Additional low power nodes

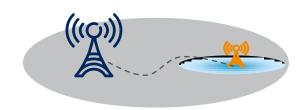
Backhaul ⇔ coordination

WHEN TO DEPLOY SMALL CELLS? WHY IS RADIO COORDINATION NEEDED?

3

- > To improve uplink coverage
 - i.e.cell edge throughput
- To increase capacity
 - Capacity improves as coverage improves
- Offload congested macro cells
- Interference coordination between macro and small cells will
 - Boost coverage
 - Boost capacity

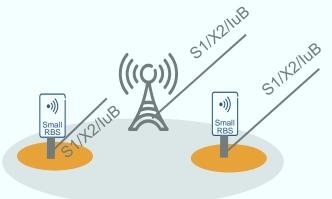
SMALL CELLS FOR COVERAGE AND CAPACITY


DIFFERENT DEGREES OF MACRO-SMALL CELL COORDINATION

- No coordination
 - Example: Uncoordinated deployment with femtos in a macro network

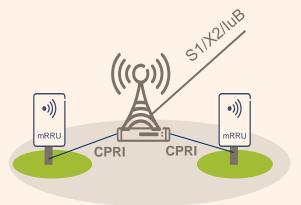
- Moderate to tight coordination
 - Example: Coordinated deployment of pico RBSs in a macro network
 - SON, Mgmt, Transport, Radio

- > Very tight coordination
 - Example: Main/remote radio network with joint scheduling (air interface) using CPRI


SMALL CELLS

- ARCHITECTURE OPTIONS

DISTRIBUTED BASEBAND ARCHITECTURE


- 'NORMAL' BACKHAUL MACRO-SMALL RBS

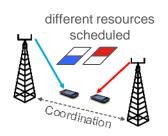
- > Backhaul: As for macro S1/X2/lub
- > Performance potential: Good
- Coordination: Moderate / Tight

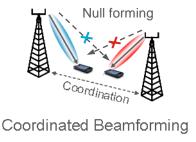
COMMON BASEBAND ARCHITECTURE

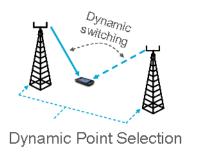
- CPRI INTERCONNECTING RADIO UNITS AND BASEBAND

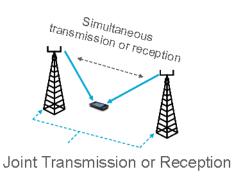
- > Backhaul: As for macro S1/X2/Iub
- > CPRI: Primarily Dedicated Fibre
- > Performance potential: Best
- Coordination: Very Tight

ADDRESSES DIFFERENT
DEPLOYMENT SCENARIOS


"WHAT IS COMP?"






- Multiple schemes and possibilities, often used in combination
 - Coordinated scheduling
 - Coordinated beamforming (null forming)
 - Dynamic point selection
 - Joint transmission/reception

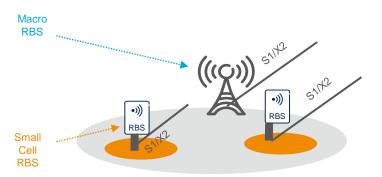
– . . .

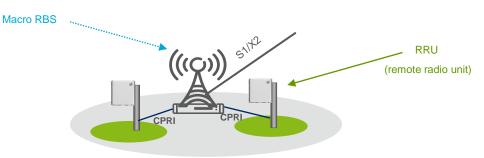
Coordinated Scheduling

TRANSPORT REQUIREMENTS

- FROM RADIO COORDINATION FEATURES

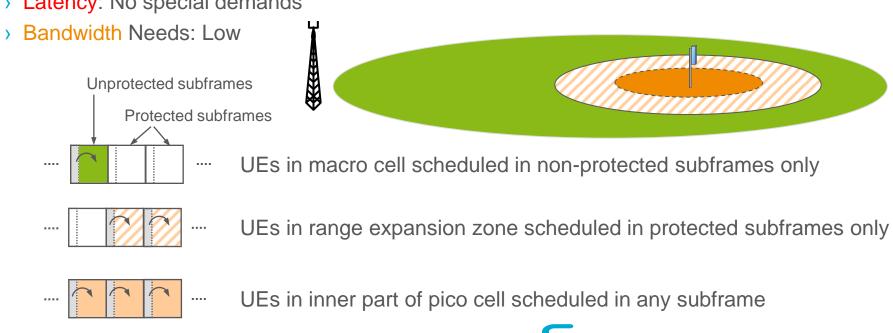
BANDWIDTH


TYPE OF BACKHAUL?



TRANSPORT REQUIREMENTS

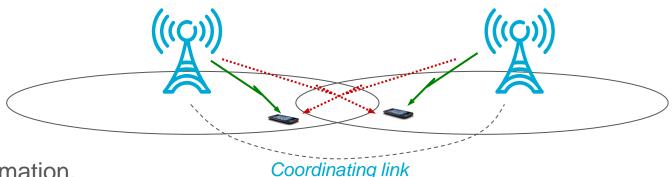
- RADIO COORDINATION FEATURES FOR LTE


Type of Radio Coordination	Absolute time accuracy - Applicable at the antenna reference point	Latency (1-way) - MacroSmall Cell	Feature Bandwidth Requirements	Likely Deployment Scenario
Very Tight Co-ordination	+/- 1.5 us	< 0.5 ms	Up to 1Gbps/antenna (internal RBS interface)	> CPRI case only
Tight Co-ordination	+/- 1.5 us	1-10 ms ¹	MediumLow	> CPRI case > Small Cell RBS, only if low latency + time alignment needs are supported
Moderate co-ordination (time alignment needed)	+/- 5 us	None ²	Low	> CPRI case > Small Cell RBS, only if time alignment needs are supported
Moderate co-ordination (no time alignment)	None ³	None ²	Low	> CPRI case > Small Cell RBS

Note1: Performance benefit larger with lower latency

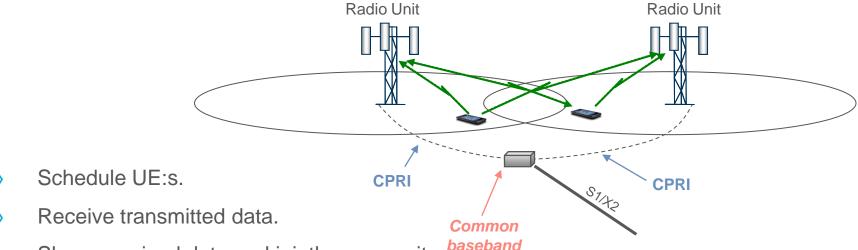
Note2: No special requirements for coordination features

EXAMPLE 1: MODERATE COORDINATION EICIC - ENHANCED ICIC


- Macro cell avoids scheduling in "protected" subframes
 - Capacity loss in macro layer and pico layer
 - Reduced interference from macro cell in "protected" subframes
- Advanced Rx in Ue required for range expansion
- Cell size: Dense urban environment
- Time alignment: +/-5us required between macro and small cell
- Latency: No special demands

TIME ALIGNMENT NEEDED

EXAMPLE 2: TIGHT COORDINATION DOWNLINK COORDINATED SCHEDULING

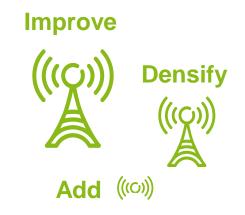


- Share information.
- > Based on received information, perform coordinated scheduling
- Cell size: Dense urban environment
- > Time alignment: +/-1.5us required between macro and small cell
- Latency: 1..10ms the lower the latency, the better the cell edge gain
- Bandwidth: Up to 20Mbps, per coordinated cell pair

TIME ALIGNMENT & LOW LATENCY NEEDED

EXAMPLE 3: VERY TIGHT COORDINATION UL JOINT RECEPTION (UL L1 COMP)

- Share received data and jointly process it (Communicate back ACK/NACK to BS responsible to certain UE.)
- Cell size: Dense urban environment
- Time alignment: +/-1.5us required between cells
- Latency: <0.5ms one way
- Bandwidth: 1Gbps per antenna, internal RBS interface
- No impact on mobile backhaul


TIME ALIGNMENT, HIGH BW & VERY LOW LATENCY => **BASEBAND INTERNAL ONLY**

SUMMARY

- Some radio coordination features require Time Alignment between radio subframes
- > CoMP features:
 - Optional, radio coordination features
 - Cost of deployment vs actual gain must be considered
- Radio coordination features with very stringent synchronization, BW and latency demands realistically will be run only over CPRI
- > CPRI is an internal RBS interface, not part of mobile backhaul

TIME ALIGNMENT OF <+/-5US
OVER X2 FOR SOME FEATURES

ACRONYMS

- > CPRI: Common Public Radio Interface
- > CoMP: Coordinated Multipoint
- > elClC: Enhanced Inter Cell Interference Coordination
- > **EPC**: Evolved Packet Core
- > RRU: Remote Radio Unit
- > **UE**: User Equipment
- > X2: Standardized interface between LTE RBSs
- > S1: Standardized interface between LTE RBS and EPC
- > SON: Self Optimizing Networks

ERICSSON