

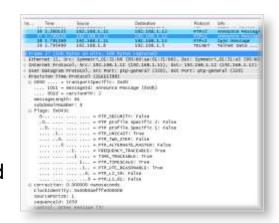
Billy Marshall

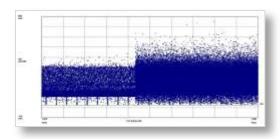
Pre-sales Engineer

International Telecom Sync Forum - Nov 2011

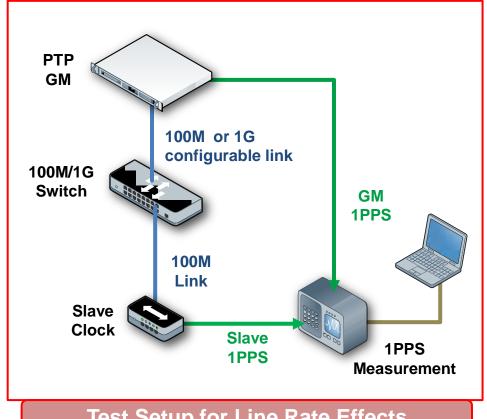
- Experiences in synchronisation deployments for UK and Scandinavia
- Some operators now have no SDH left in mobile access network
- Many operators have deployed PTPv2
 - Slave clocks from various vendors giving required performance
 - On-going and future deployments
- Growing interest in SyncE
 - Lab trials/field trials at present
- This presentation shows some things I have found of interest...

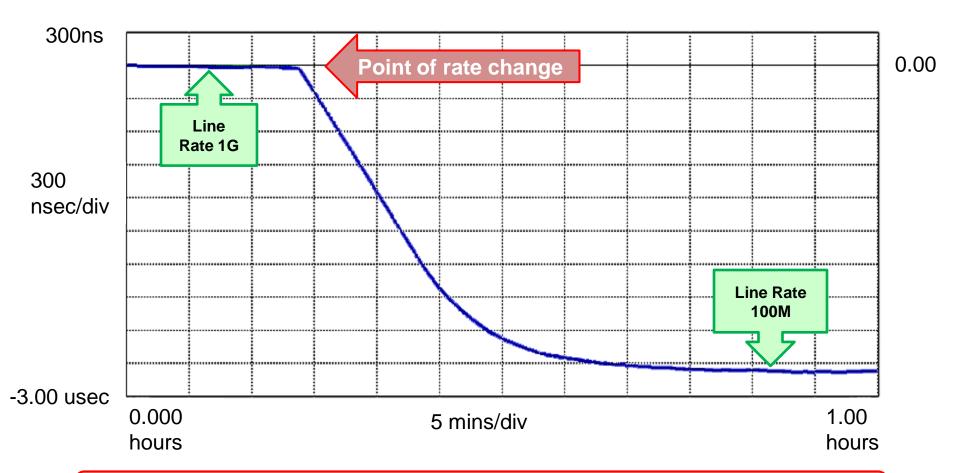
- GSM, UNTO FDD LTF FT requires ±50ppb frequency c i c t e ii interface of RBS
- LTE-TDD requires +10µ2 chao a duracy between di 1721 (R)S
- LTE-Advanced co-ordinated MultiPoint (CoMP) may require as low as ±1µs phase accuracy between distributed RBS
 - Varied methods of deploying CoMP, firm sync requirements are yet to emerge
 - This level of phase accuracy is difficult using packet transport using current systems and network architecture


- The timing budget starts at the master clock(s)
 - Here, the user has full control over sync quality
- 1PPS & Time Of Day accuracy at the receiver is affected if cable infrastructure settings are ignored
 - Incorrect antenna cable length delay adds ~45ns inaccuracy for every 10 meters
- GPS Jamming becoming an issue
 - important to have a resilient and redundant systems
 - Other PRC reference choices becoming available
 - PTP/Rb PRC
 - eLORAN
 - Other GNSS systems



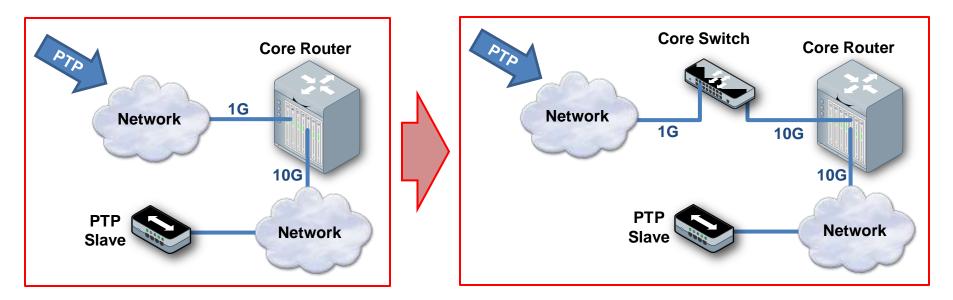
- PTPv2 now fully trialled by a most operators and deployed by many
- Very noticeable variation in slave clock performance between vendors
 - Packet metrics and packet KPIs are not standardised
 - However, operators are able to engineer networks to achieve required performance
- Use of long-term sync monitoring solutions at selected sites of interest give confidence
 - Furthest from GM
 - High traffic




- Typical PTPv2 slave clock Ethernet line rates are 1Gbps or 100Mbps
- Typical PTPv2 GM line rates are 1Gbps
- I ine rate affects the time taken to 'read in' packets before processing
- Differing line rates cause asymmetry in the network path
- Asymmetry = phase offset at the slave clock

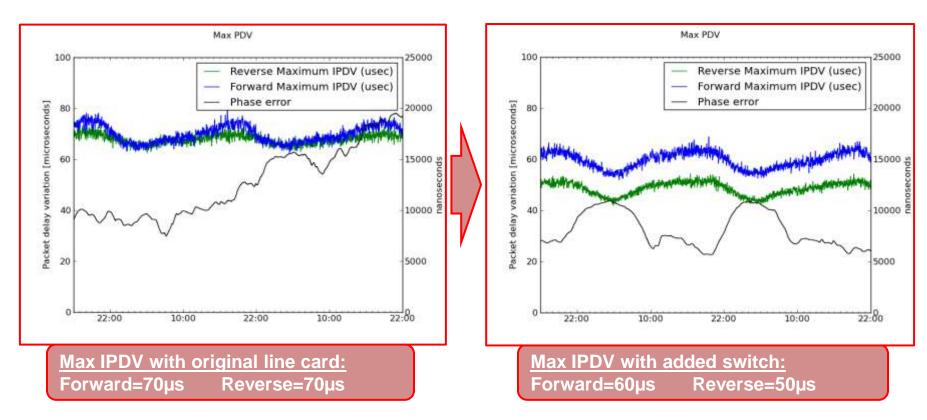
Test Setup for Line Rate Effects

Changed Line Rate - 1PPS Slave Offset



-2.8µs offset as a result of 1G to 100M Ethernet line rate change PTPv2 packets experienced 5.6µs longer 'read in' time in upstream - halved

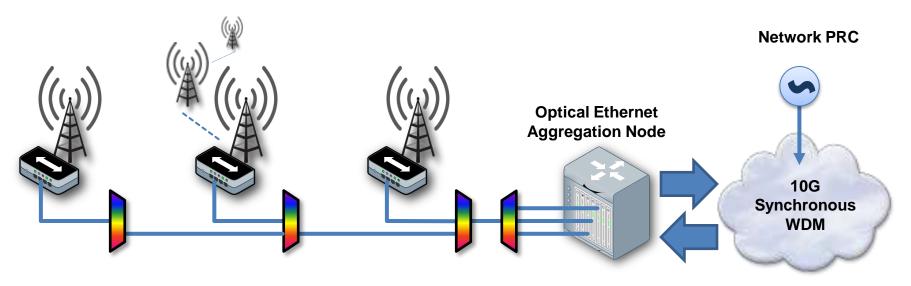
Ethernet Line Card PDV



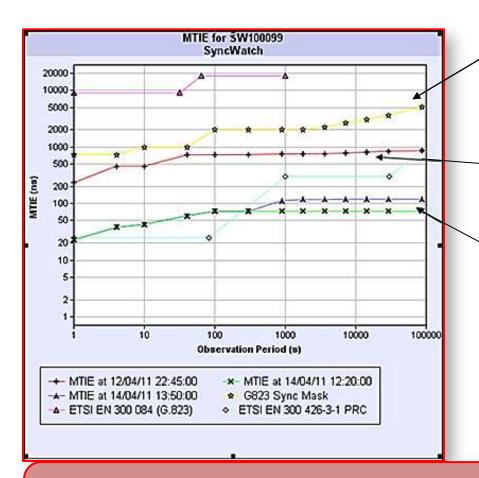
- Some Ethernet line cards can add more PDV than an extra 'hop'
- Example of this mobile operator monitoring the measured flow stats at slave clock noticed unusually high 'Max IPDV' statistic...
-Isolated it to a 1G line card and removed this from path by using another switch to perform the required link speed change before problem card
- This added a network 'hop' but <u>reduced</u> max IPDV seen at slave clock by 20µs

IPDV at Slave - Line Card Changed

- IPDV Measurements were made by slave clock only. Slave TIE had GPS reference.
- Forward IPDV now greater than reverse (normal) another 'feature' of line card?
- Slave Clock TIE (E1 test point). Shows better medium/long term stability.
- All results also show diurnal increase/decrease in IPDV due to overall network traffic



- Physical layer, <u>frequency only</u> distribution currently...
 - Maybe by the time I present this slide I will know of developments in this area!
- Seeing big interest in this as a 'drop in' sync replacement for SDH core and access networks
 - Especially when utilising existing GSM, GSM-R and 3G base stations
- Possibility to use existing SDH Sync Supply Units (SSU) alongside SyncE distribution
 - Recovered SyncE clock jitter can be attenuated by SSU and reinserted, allowing longer sync chains



- Method of transporting sync and data backhaul to/from RBS
- Use of passive optical splitters instead of active nodes
 - No jitter or wander introduced to SyncE
 - Zero 'hops' for PTPv2
- Better sync at 'head end' base stations allows budget for longer 'chains' of microwave-to-microwave links with 'in spec' sync at the furthest node

Packet Optical System - Results

Yellow – G.823 Sync mask.

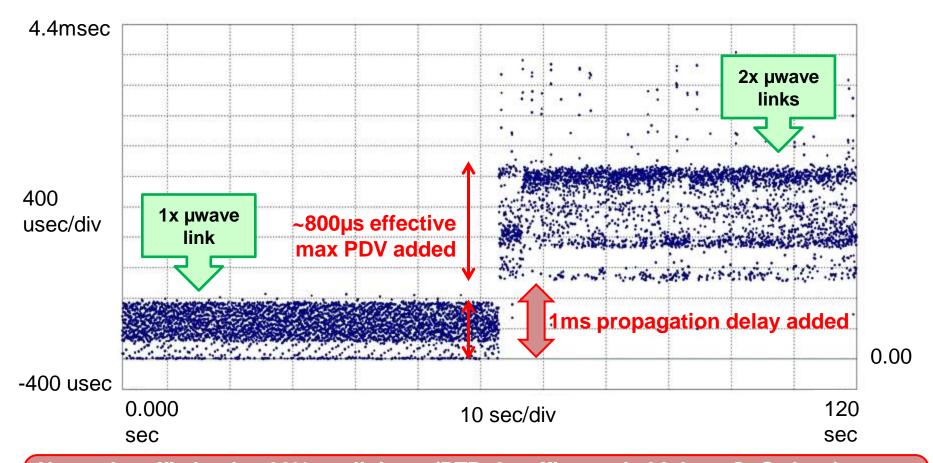
Red - The performance of the E1 based sync in the existing network

Green - The even better performance with SyncE over Packet Optical System.

Measurement performed over a period of a month in a live network.

Multiple fibre distribution units over 200+ km live network (6 equipment 'hops')

Traffic running at 100% throughput



- Microwave is a 'harsh' environment for PTPv2 transport
- Microwave factors that affect on PTPv2:
 - Adaptive Coding and Modulation link speed varies, usually due to weather conditions
 - Above can cause variable buffering
 - Blocking of PTPv2 packets can occur if frames are already in the process of being transmitted
- Native SyncE should not incur the above (PTPv2) issues but expect signific jitter increase per 'hop'
- Proprietary solutions provide exclusive channels for PTPv2 traffic or transfer SyncE
 - Not performed much testing in this area at present but would like to!

FARON

PTPv2 – Adding a µwave Link

Network traffic load at 90% at all times (PTPv2 traffic was in highest QoS class) 1ms change in propagation delay as effect of added link (symmetric) Large increase in PDV compared to fixed line 'hops'

Conclusions

Master Clock

- Measure the cable delay
- Resiliency and redundancy in all aspects

PTPv2

- Know, and compensate for, asymmetry
- Characterise the network transport hardware

SyncE

- Very good frequency performance is achievable
- Being seen as a 'drop in' replacement for TDM in networks/segments

Microwave Sync Transport

- Sending standard sync traffic across µwave links is a challenge
- Using dedicated sync channels should give better sync transfer testing required

Testing and monitoring is key...

Before, during, and after deployment…!

Any Questions...??