

Long Term Time & Timing Trials with eLoran

Charles Curry B.Eng, FIET

Founder & Managing Director Chronos Technology Ltd

ITSF Edinburgh - November 2011

Presentation Content

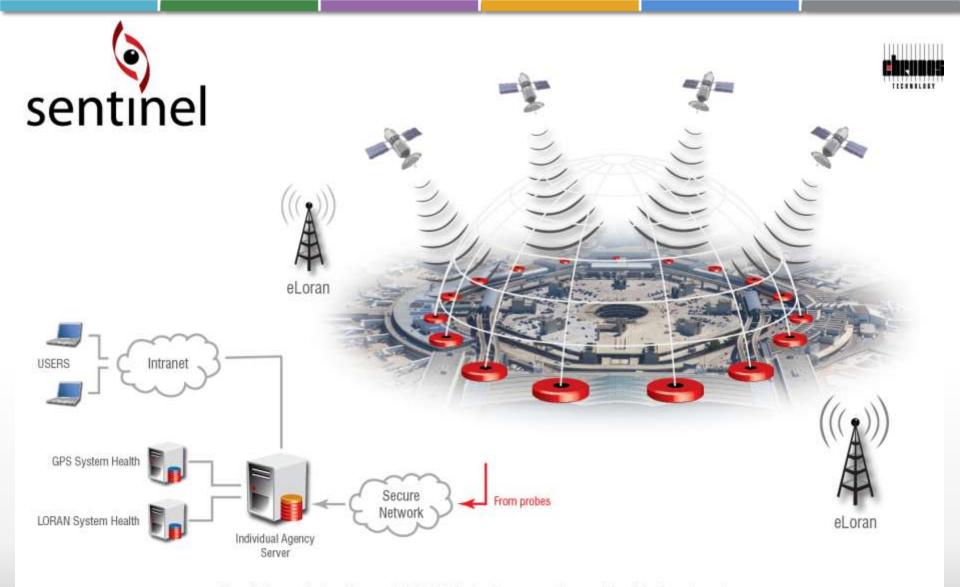
- Motivation Chronos R&D Projects
- Re-Examine viable alternatives to GNSS
- Identification & Mitigation of Issues
- Latest eLoran Timing Trials
- Conclusion

Chronos R&D Projects

- UK Technology Strategy Board
 - http://www.innovateuk.org/
- Collaborative R&D Calls
- 2008 "Gathering Data in Complex Environments"
 - "GAARDIAN" £2.2m
- 2010 "Trusted Services"
 - "SENTINEL" £1.8m

The GAARDIAN Project – GPS Interference Detection and Mitigation

- GNSS Availability, Accuracy, Reliability anD Integrity Assessment for timing & Navigation
- Research data gathering necessary to create a GPS Interference Detection and Mitigation (IDM) network
 - At point of use, 24 x 7 x 365
 - For mission and safety critical applications
 - Which use GPS (or GNSS) signals
 - Leveraging eLoran signals for QoS determination
- UK Government funded R&D project (~£2.2m)
 - through Technology Strategy Board & EPSRC
 - "Gathering data in Complex Environments" Call


The SENTINEL Project –

ehronos

GPS Interference Location and Mitigation

- GNSS SErvices Needing Trust In Navigation, Electronics, Location
 & timing
- Research the detection, quantification and location of interference to GNSS and eLoran signals at point of use by deploying Interference Detection & Mitigation (IDM) probes in the vicinity of critical infrastructure
- UK Government funded R&D project (~£1.8m)
 - through Technology Strategy Board and EPSRC
 - "Trusted Services" Call

Real time detection of GNSS interference for critical infrastructure

- · Protection of critical infrastructure: harbours, airports, road, rail and more
- · Protection of safety, mission-critical, security or revenue generating services
- Real-time alerts to locate deliberate and accidental GPS/GNSS interference, inc Jamming
- Assistance for appropriate agencies for mitigation of interference events
- Monitoring of GNSS frequency bands to provide indications of integrity and trust
- . System to prove the use of eLoran as a viable alternative PNT system (where GNSS is denied)

© Chronos Technology 2011

SENTINEL - Partners

Chronos – Lead Partner

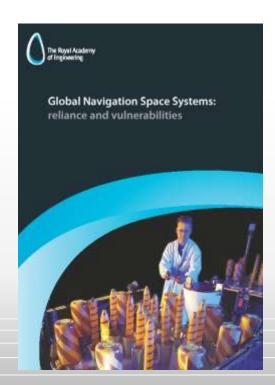
GLA – General Lighthouse Authorities

ACPO - Association of Chief PoliceOfficers

 University of Bath - Department of Electrical & Electronics

Thatcham Vehicle Security

OS - Ordnance Survey



NPL – National Physical Laboratory

GPS Vulnerabilities

- Emerging GNSS Vulnerabilities
 - Royal Academy of Engineering Report March 2011
 - http://www.raeng.org.uk/news/publications/list/reports/RAoE Global Navigation Systems Report.pdf
 - GPS Jammers
 - Criminal, PPD, Service Denial, Other
 - RF Interference
 - Key Fobs, "LightSquared"
 - Space Weather
 - 11 Year Solar Cycle starting
 - System Failure
 - PRN #24 Jan 1st 2004
 - GAO report 2009 GAO-09-670T

GPS Jammers!

- Why?
 - Steal a vehicle, something
 - Avoid
 - Road User Charges
 - Pay as you Drive Insurance
 - Tachogragh systems
 - Use company vehicle
 - Skive off early, the School Run
 - Avoid being tracked
 - Drug Dealers, Celebrities, Tagged Criminals
 - Service Denial
 - Unfriendly: North Korea, Friendly: Force Protection

Alternatives?

- Timing Stability meet ITU MTIE masks ~100ns
- UTC Traceability (Future LTE-A) ~ < 1µsec
- Other GNSS?
 - Same Vulnerability as GNSS
- LF Transmissions?
 - Parochial, Not Global, UTC, Maintenance Downtime
- NTP?
 - Not good enough, PDV, ~ms
- PTP?
 - Getting there, Hardware upgrade, Local GM, Architecture, PDV, ~µsec
- SyncE?
 - Standards not ready for UTC, Network Upgrade
- Anything Else???

eLoran?

Pros

- Different Frequency 100 KHz
- High Power (35 kV Pulses), Cs Controlled
- International Infrastructure
- UTC Traceability (not via GPS) The "e"
- Works indoors H-Field Antenna
- Complementary technology, symbiotic not competitive

Cons

- Receiver Designs
- Additional Secondary Factors (ASF)
- Politicians!

Loran Timing Receivers ~ 2008

- Frequency Stability met ITU PRC MTIE mask
- Could be suitable for telecom timing but…
- Occasional instabilities
 - Cause unknown Weather? Station maintenance?
- Major phase hits due to Tx maintenance
- Not possible to align 1pps to UTC
- Not fit for Purpose!!

Station Outage Mitigation

- eLoran Transmitters off air for maintenance
- Causes significant phase hits to timing outputs
- Chronos tested Loran Timing Receivers from Reelektronika (NL) and CrossRate (USA)

 Worked with UrsaNav in GAARDIAN to perfect solution - URS 150 – Beta Units Q4 2010

Outage Mitigation Results #1

Loran C Europe

European LORAN-C unavailability

Unavailability types:

88(En) - AUTH & UTH check

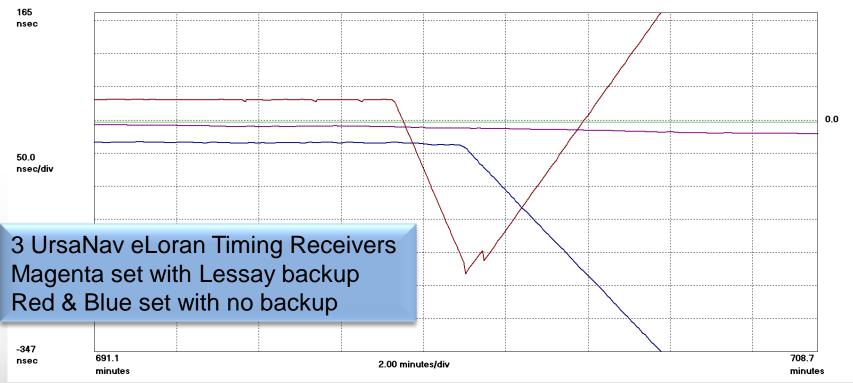
AUTH: (Autorized Unusable Time): These are scheduled transmitter off-air or blink periods for maintenance or system modification.

UTH: These are unscheduled off-air or blink periods (Failures, out of tolerance conditions...)

Reference	Type	GRI	ST E	Scheduled Time (UTC) Format: yssy-ess-og 85 mass		Real Time (UTC) Format: yeyy-mm-dd hh.mm	
				Start	End	Start	End
2011/044	AUTH	6731	Arthorn	2011-05-05 08:00	2811-05-06 18:00	2011 05-05 09:17	2011-05-06-14-07
2011/043	AUTH	6731	Anthom	2911-04-14 09:00	2011-04-14 16:00		
2011/042	AUTH	6731	Anthern	2011-04-13 09:00	2011-04-13 14:00	2011-04-13 11/30	2911-04-13 11:58
2011/041	AUTM	(6731	Anthorn	2011-04-12 09:00	2011-04-12 15:00		
2011/039	UTH	6731	Anthorn			2011-03-31 12:32	2011-03-31 12:45
2011/035	AUTH	6731	Acthorn	2911-04-07 09:00	2811-04-07 17:00	2911-04-07-09:59	2011-04-07 12:04
2011/022	UTH	6731	Anthorn			2011-02-24 13:81	2011-02-24 13:27
2011/017	AUTH	6731	Anthorn	(2011-03-03 09:00	2811-03-03 17:00	2611-03-83 10:00	2011-03-03 14:50
1011/009	AUTH	6731	Action	2011-02-03 09:00	2011-02-03 17:00	2011-02-03-09:81	2011-02-03 14:39
2010/169	AUTH	6731	Anthorn	2011-01-06 09:00	2011-01-86 17:00	2011-01-06 10:00	2011-01-06 14:31
2010/153	jutm .	6731	Anthorn			2010-11-18 05:85	2010-11-10 07:19
2010/142	AUTH	6731	Anthorn	2010-11-04-09:00	2010-11-04 16:00	2010-11-84 09:81	2010-11-04 14:32
2010/130	AUTH	6731	Anthorn	2010-10-07 10:00	2010-10-07 16:00	2010-10-07 19:02	2010-10-07 12-52
2010/123	AUTM	6731	Anthorn	2010-09-13 09:00	2010-09-13 16:00	2010-09-13 10:10	2810-09-13 15:06
2010/112	AUTH	6731	Anthorn	2210-07-28 08:00	2010-07-29 29:00	2010-07-28 08:81	2010-07-29 15-22
2010/103	UTM	6731	Anthorn			2010-06-15 12:36	2010-06-15 12:42
2010/182	AUTM.	56731	Anthorn	2010-07-01 09:00	2810-07-01 17:00	2010-07-01 10:11	2010-07-01 11:01
2010/097	IUTH	6731	Arthorn			2010-06-15 11:06	2010-06-15 11/16
2010/096	UTH	6731	Anthorn			2010-06-15 00:36	2010-06-15 88:42
2010/095	JUTH	6731	Arthern	13.22		2010-06-15 07:14	2010-86-15 87:20
T.	4	4	1 1	3	3	F	U 1
	-	-	Action •		F 2		

Select your search conditions above then clic on the search icum to apply the filter

20 nb lines/pages Apply-filter Resettites


Nata: According to the North European Laran System Standard Operating Procedures (NELS SCP #1, 7 Feb 2003), scheduled off air periods are considered as AUTH if users are informed at least 72 hours in advance. Sa, off-air or blink per hours in advance are considered as UTM.

Outage Mitigation Results #2

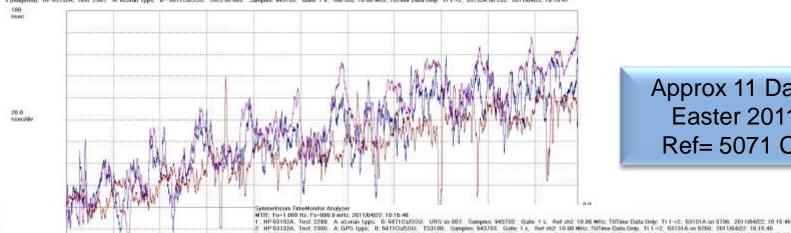
Phase deviation in units of time; Fs=999.9 mHz; Fo=1.0000000 Hz; 2011/05/04; 21:34:52

1 (blue): HP 53132A; Test: 2311; A: eLoran 1pps; B: 5071Cs/SSU; URS sn 007; Samples: 483864; Gate: 1 s; Glitch: 15.00 nsec; Ref ch2: 10.00 MHz; TI/Time Data Only; TI 1->2; 53131A sn 3736 2 (red): HP 53132A; Test: 2312; A: eLoran 1pps; B: 5071Cs/SSU; URS sn 004; Samples: 483864; Gate: 1 s; Glitch: 15.00 nsec; Ref ch2: 10.00 MHz; TI/Time Data Only; TI 1->2; 53131A sn 6250; 3 (magenta): HP 53132A; Test: 2313; A: eLoran 1pps; B - 5071Cs/SSU; URS sn 003; Samples: 483864; Gate: 1 s; Glitch: 15.00 nsec; Ref ch2: 10.00 MHz; TI/Time Data Only; TI 1->2; 53132A sn

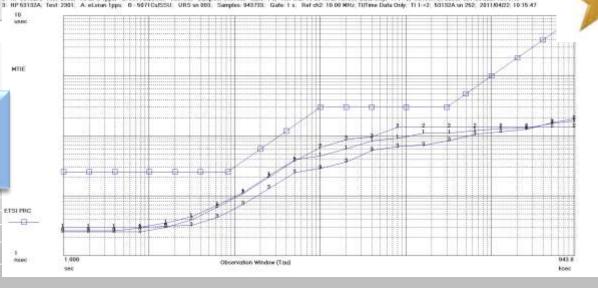
Also proves eLoran in inherently selfresilient to Tx failure.

Automatic UTC Alignment

- Given location, eLoran Timing Receiver will automatically adjust 1pps to <2µsec of UTC
 - UTC "Eurofix" message from Anthorn
- Final adjustment ASF Calibration
 - <50ns by comparison with local GPS UTC</p>
- "GAARDIAN" proved this feature



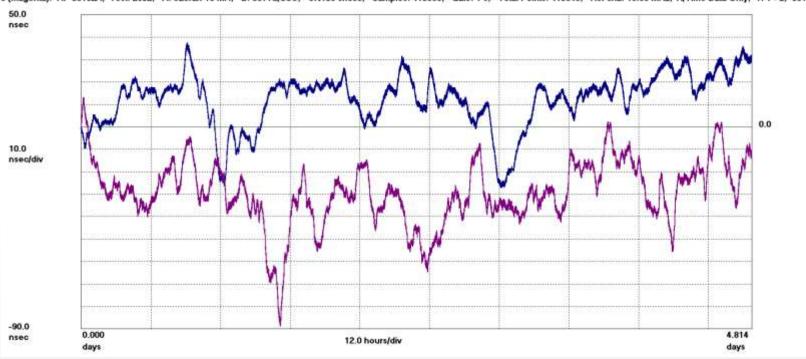
eLoran Fit for Purpose (Update)


Phone-deviation in units of time: Fig-999.9 mHz: Fig-1.0000000 Hz: 2011/04/22: 10:15:46 1 (Black HP 63132A Test 2296 A eleran taps, B 6671Cs/SSU URS se 867 Samples 943733 Cate 1 s. Ref etc. 1 0.00 MHz, Tuffine Data Cleby, Ti 1 - Z 53131A sn 3736, 2011(B472, 10.16.46 2 (red): HPSS132A, Test 2300. A GPS type: 8:5071Cs/SSU: T53100. Samples: 943733. Gate: 1 s. Rel cht/: 16:00 MHz: Ti/Time Data Cht/r: T11->2:53131A ss 4250. 2011/04/22: 10:16:46 3 (magenta) HP 53132A: Text 2001. A storar type. 8 - 9671CuSSU. URS on 900. Samples: 943730. Gate 1 s. Ref ch2: 10:00 MHz: Tilline Data Only. Till - 2: 53152A on 252: 2011/04/22; 10:15:47

ETSI PRIC

Approx 11 Days Easter 2011 Ref= 5071 Cs

eLoran better than Gold Std GPS Timing Rx!


Most Recent TIE

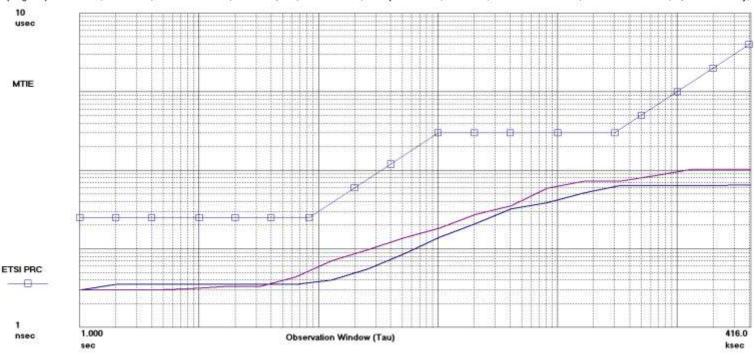
Symmetricom TimeMonitor Analyzer

Phase deviation in units of time; Fs=999.9 mHz; Fo=10.000000 MHz; 2011/10/13; 13:16:48

1 (blue): HP 53132A; Test: 2650; A: 55300 10 MHz; B: 5071Cs/SSU; Samples: 415934; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53131A sn 3736; 2011/10 3 (magenta): HP 53132A; Test: 2652; A: eLoran 10 MH; B: 5071C/SSU; UN150 sn003; Samples: 415930; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53132/

Blue: Symmetricom 55300 GPS Rx (HP/Agilent)

Magenta: UrsaNav 150 eLoran Rx


Most Recent MTIE

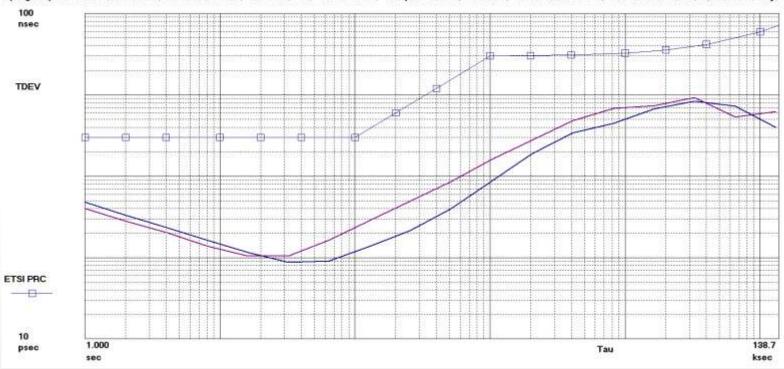
Symmetricom TimeMonitor Analyzer

MTIE; Fo=10.00 MHz; Fs=999.9 mHz; 2011/10/13; 13:16:48

1 (blue): HP 53132A; Test: 2650; A: 55300 10 MHz; B: 5071Cs/SSU; Samples: 415934; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53131A sn 3736; 2011/10 3 (magenta): HP 53132A; Test: 2652; A: eLoran 10 MH; B: 5071C/SSU; UN150 sn003; Samples: 415930; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53132/

Blue: Symmetricom 55300 GPS Rx (HP/Agilent)

Magenta: UrsaNav 150 eLoran Rx


Most Recent TDEV

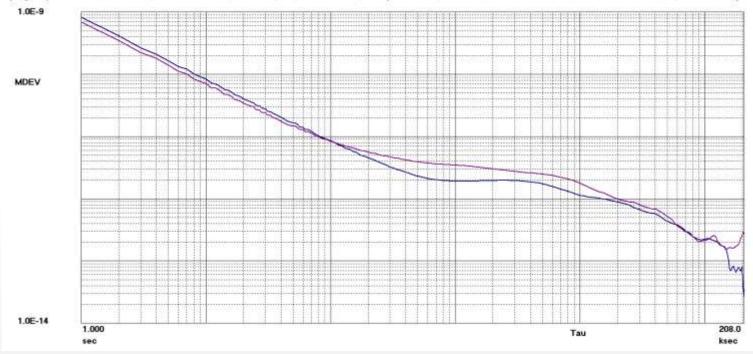
Symmetricom TimeMonitor Analyzer

TDEV; Fo=10.00 MHz; Fs=999.9 mHz; 2011/10/13; 13:16:48

1 (blue): HP 53132A; Test: 2650; A: 55300 10 MHz; B: 5071Cs/SSU; Samples: 415934; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53131A sn 3736; 2011/10 3 (magenta): HP 53132A; Test: 2652; A: eLoran 10 MH; B: 5071C/SSU; UN150 sn003; Samples: 415930; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53132/

Blue: Symmetricom 55300 GPS Rx (HP/Agilent)

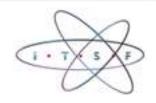
Magenta: UrsaNav 150 eLoran Rx



Symmetricom TimeMonitor Analyzer

Root Allan Variance; Overlapping Samples; Fo=10.00 MHz; Fs=999.9 mHz; 2011/10/13; 13:16:48

1 (blue): HP 53132A; Test: 2650; A: 55300 10 MHz; B: 5071Cs/SSU; Samples: 415934; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53131A sn 3736; 2011/10 3 (magenta): HP 53132A; Test: 2652; A: eLoran 10 MH; B: 5071C/SSU; UN150 sn003; Samples: 415930; Gate: 1 s; Total Points: 415943; Ref ch2: 10.00 MHz; Tl/Time Data Only; Tl 1->2; 53132/


Blue: Symmetricom 55300 GPS Rx (HP/Agilent)

Magenta: UrsaNav 150 eLoran Rx

Conclusions

- eLoran could complement GPS or PTP timing
- Work to do.....
 - Cost reduction
 - H Field Antenna trials
 - Automatic ASF calibration for UTC alignment
 - Needs USA to re-launch LF Transmissions
 - Needs long term UK Government support

Thank you for listening

25 Years & Still in Sync!

<u>charles.curry@chronos.co.uk</u> <u>www.chronos.co.uk</u> <u>www.gps-world.biz</u>