Power Matters

Time Interfaces

Adam Wertheimer Applications Engineer

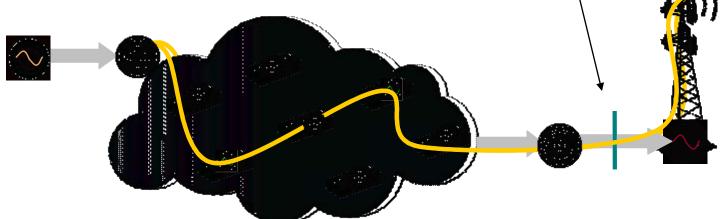
03 November 2011

Why do we need time?

- High accuracy
 - Wireless base stations
 - Mobile backhaul
- Lower accuracy
 - Delay measurements
 - Alarm messaging correlation between sites

Application Requirements for Time/Phase

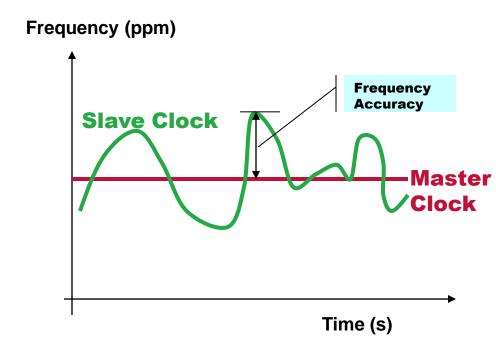
Application/Technology	Accuracy		
CDMA2000	± 3 or ± 10 microseconds with respect to CDMA System		
	Time		
TD-SCDMA (NodeB TDD mode)	3 microseconds		
WCDMA-TDD (NodeB TDD mode)	In TDD mode, the synchronization inputs shall not exceed		
	2.5 microseconds.		
W-CDMA MBSFN	12.8 microseconds		
LTE MBSFN	Values < +/- 1 microseconds		
W-CDMA (Home NodeB TDD mode)	Microsecond level accuracy		
WiMAX	The BS transmit reference timing shall be time-aligned		
	with the 1pps pulse with an accuracy of ± 1 ms		
LTE-TDD	3 or 10 microseconds depending on cell size		
LTE-TDD to CDMA 1xRTT and HRPD	± 10 microseconds with respect to CDMA system time		
handovers			
IP Network delay Monitoring	+/- 1 ms with respect to a common time reference (e.g.		
	UTC)		
Billing and Alarms	+/- 100 ms with respect to a common time reference (e.g.		
	UTC)		



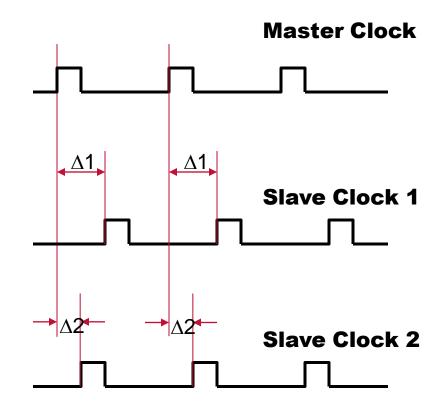
Reference: ITU-T G.8271 Draft

Client Time Interface

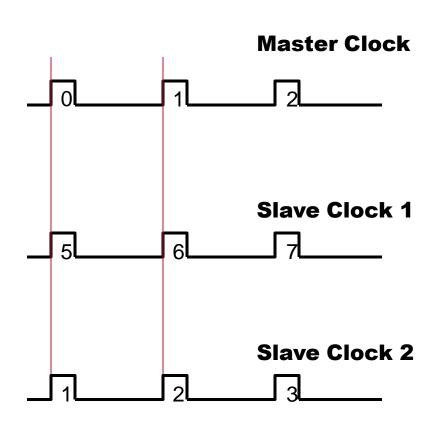
- Time boundary passes 3 types of information
 - Clock
 - Time Pulse / Frame Pulse
 - Time of Day
- May be used to transfer different types of timing information:
 - Frequency Accuracy (FFO)
 - Frequency (MTIE & TDEV)
 - Phase (Alignment/PPS)
 - Time of Day


Time transfer interface

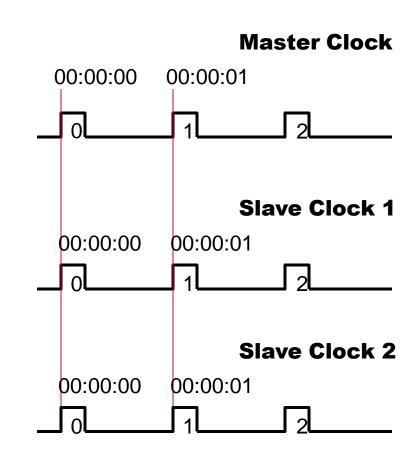
Timing Technology: Frequency Accuracy


- Frequency accuracy (FFO) is the difference in frequency between the server clock and the recovered client clock over a time interval
- Frequency targets
 - ± 32 ppm for Stratum 4 & 4E
 - ± 4.6 ppm for Stratum 3 & 3E
 - ± 50 ppb for GSM & WCDMA-FDD
 - ± 100 ppb for Home NodeB

Timing Technology: Wander (Frequency)

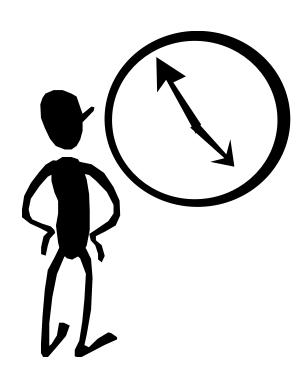

- TIE, MTIE and TDEV
- Phase accuracy is the measurement of the change in phase of the recovered client in comparison with the server clock over a time interval.
- Phase targets for traffic interface
 - 18 µs MTIE for E1 from ITU-T G.823
 - 18 µs MTIE for T1 from ANSI T1.403
 - < 18 µs MTIE for E1/T1 from ITU-T G.8261
- Phase targets for synchronization interface
 - 2 µs MTIE for E1 from ITU-T G.823
 - 1 µs MTIE for T1 from ANSI T1.101

Timing Technology: Phase


- Alignment and PPS
- Phase alignment is in addition to phase lock. Phase alignment also referred to as Latency Correction.
- Phase alignment has
 - Bounded phase offset between server clock and recovered client clock
 - Bounded phase offset between different recovered client clocks
- Phase alignment requires bidirectional mechanism
- Phase alignment targets
 - ± 1.25 µs for WCDMA-TDD
 - ± 3 μs for CDMA2000, CDMAone
 - ± 1 µs for WiMAX

Timing Technology: Phase (Time of Day)

- Time of Day or Same Time is in addition to Phase Alignment.
- Time of Day is the ability to distribute the specific time of day in terms of year, month, day, etc. from the server clock to the clients.
- Time of Day normally requires a 1 PPS or 1 Hz signal at both the server and clients
- Time of Day targets
 - UTC/GMT time
 - GPS replacement


New Concepts for Phase/Time Transfer

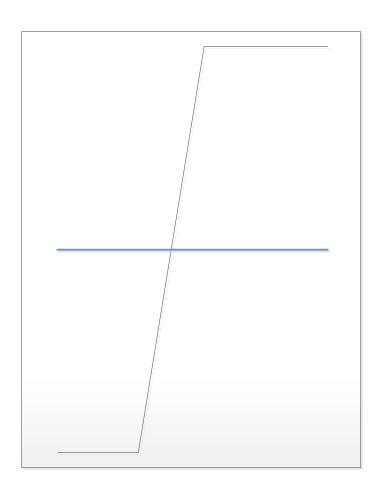
- Coherency
 - Common time/frequency source
 - Different network for time and frequency
- Phase "holdover"
- One-way versus two-way methods

Challenges of the Time Interface

- Cabling types
- Maintaining accuracy of phase/time signal
- Compatibility with existing systems

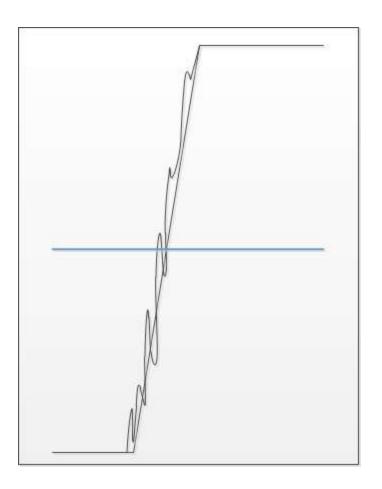
Working Environment Cabling

Distance


- Within a building
 - May need to go between floors
 - Less than 200 m (~700 ft)
- Within a cabinet
 - Less than 1m (~3 ft)

Cabling types

- Twisted pair (DS1/Voice wiring)
- Coax
- Ethernet
 - Unshielded twisted pair


Working Environment Problems with noisy clock signals - 1

- All clock signals have a rise time/fall time
 - Depends on driver, cabling and receiver
- Receiver uses a certain threshold

Problems with noisy clock signals - 2

- Noise on clock
 - Jitter on frequency
 - Random error in phase instant
- Need selected interface to work at all cable lengths and receiver types

Serial Interfaces

- TIA/EIA RS-232 (single ended)
- TIA/EIA RS-422/RS-485 (differential)
 - Common Mode Range
 - RS-422 has range of +/-3 V
 - RS-485 has range of -7 to 12 V
 - RS-485 meets all RS-422 requirements and allows longer line lengths
- ITU-T V.11 Compatible with RS-422

Commonly used interfaces

- Frequency
 - Clock
 - DS1/E1
 - SONET/SDH
- Phase pulse
 - 1 PPS (and other pulse rates)
- Time-of-day over serial
 - NMEA-0183
- Combined Phase and serial time-of-day
- Frequency/Phase/Time-of-day
 - NTP
 - PTP
 - IRIG
 - PTTI

Frequency

- Different ways to provide high speed clock
 - 1/5/10 MHz, sine wave, 1 Vrms into 50 ohm (13 dBm), 0V centered over BNC
 - Normally 10 MHz
 - 0V-crossing point of sine wave against PPS rising edge is sometimes seen
 - G.703-13 2.048 MHz E1 sync interface clock, over BNC
 - Very common on 2G/3G base stations for sync input port
 - E1/T1, HDB3/B8ZS, all-ones or carrying traffic, over BNC or RJ-48c
 - Very common on 2G/3G base stations for traffic input ports
 - Traffic carrying ports may be assumed to be unreliable
 - Most, but not all, can tolerate traffic mask as filter down to 16 or 50 ppb
 - SyncE, Ethernet, RJ-45 or optical
 - Likely a traffic carrying port rather than a dedicated sync port
 - Composite Clock, 64 kbit/s
 - Not seen much outside USA
 - Not seen on base stations generally

Time Pulse / Frame Pulse

- Different ways to provide time pulse
 - PPS, 2.5V or 5V, TTL, Active High, Rising Edge Aligned over BNC
 - Very popular
 - Pulse width 100 ns 200 ms
 - ESEC/PP2S
 - Same as PPS, but for some CDMA systems
 - PPM, PPD, PPH
 - Same as PPS, but lower rate
 - PPS over RS-422/RS-232 (DB9/DB25/RJ-45)

Two-way Interfaces

- Two-way packet
 - 1588 packets over IP/Ethernet link
 - for 4G base stations that are 1588-aware
 - NTP packets over IP/Ethernet link
 - normally legacy base stations used for billing & alarms
- Other two-way methods DTI/UTI (ITU-T J.211)
 - Used in the cable industry
 - Not used in mobile backhaul

Serial Time Stamp

ASCII-based time code

- Implied clock instant
- Proprietary (i.e. from Motorola GPS)
- NEMA 0183
 - Example sentence: \$GPGGA, Time, Lat, N, Long, W, Quality, Num of Sat, Precision, Altitude, M, Height, M,, Checksum

General items in messages

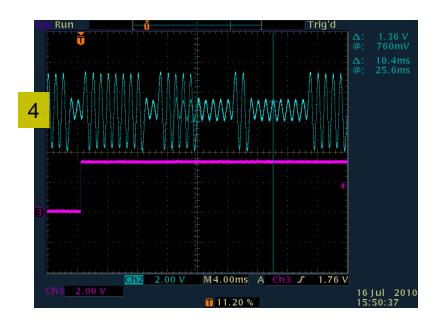
- Time stamp
 - Full date
 - Seconds since epoch
- Status of GPS receiver
 - Locked, unlocked, error conditions
 - Number of satellites
 - Different status messages may be needed for other receivers of other GNSS systems

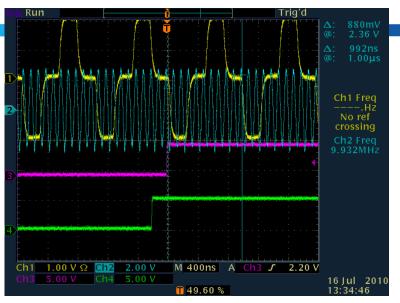
Time stamp with clock

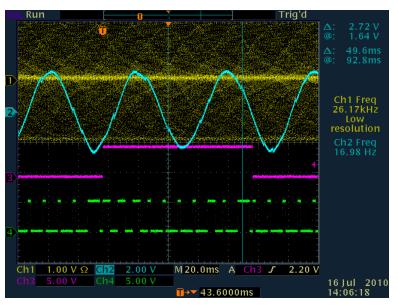
- Gives time code for instant defined by 1 PPS clock
- Advantages
 - Accuracy of 1 PPS clock pulse
 - Flexibility of serial time code protocol
- Examples
 - IRIG-B over 5V TTL BNC (primarily DCLS, but also AM)
 - IEEE 1344-1995 has extensions to IRIG-B
 - AFNOR NFS-87-500

Other Time Formats - IRIG

- Pulse rates
 - 1 pulse per minute to 10,000 pulses per second
- Form
 - DC Level Shift (DCLS)
 - Amplitude modulation
 - Carrier frequency (selected values from 100 Hz to 1 MHz)
 - Manchester modulation
- Time representation
 - Binary Coded Decimal Time of Year (BCD_{TOY})
 - BCD_{Year}
 - Straight binary second (0 to 86,400)
 - -86,400 seconds = 24 hours


Other Time Formats – PTTI


- 1 PPS
 - 50 Ohm coax
 - Amplitude of 10 V
 - Rise time of less than 50 ns
 - Pulse width of 16 30 microseconds
- 2-wire balanced with 100 Ohm termination
 - BCD Time Code sent after the 1 PPS pulse
 - Voltage of 0 to 5.5 V (DC)
- Timing fault information (status)
 - 50 Ohm coax



Example Time Interfaces

- Channel 1 E1 (G.703)
- Channel 2 10 MHz
- Channel 3 1 PPS
- Channel 4 IRIG

PTP as Time Interface

- Embedded PTP Clients allow manufacturers flexibility with internal architectures
- Defined interface with other equipment
 - Telecom profile for frequency G.8265.1
 - Future telecom profile for time/phase Proposed
- Easily testable using a probe or portable client at same point in network
- Flexibility to use the same hardware interface for different architectures
 - Local PRTC with PTP interface
 - PRTC from different location via BC

Long Term Solution – Embedded PTP Clients

- Need embedded PTP clients in all end equipment
- Leverage work on Boundary Clock in the network
- Internal processing of time and frequency information much easier problem to solve

Summary of Interfaces

Protocol	Physical layer	Standards	Frequency	Phase/Time
			Transfer	Transfer
PTP	Copper or	IEEE 1588 and	Yes	Yes
	Optical	802.3		
Serial time	RS-422 or	Multiple	No	Yes
stamp	RS-232			
formats				
Serial and	V.11/RS-422	Company	Yes*	Yes
1 PPS		proprietary		
clock		standards		
IRIG	Copper cable	Yes	Yes	Yes
	or coax			
PTTI	Copper cable	Yes	Yes	Yes
	and coax			
DTI	Copper cabling	Cable industry	Yes	Yes

Future of Time Interfaces

- Many interfaces work for the near term depending on the application
- Embedded PTP client should be the long term goal

Questions?

Selected Reference Documents

- ANSI/TIA/EIA-422-B Electrical Characteristics of Balanced Voltage Differential Interface Circuits, September 2005.
- IRIG Standard 200-04, IRIG Serial Time Code Formats, September 2004.
- ICD-GPS-060, GPS User Equipment (Phase III) Interface Control Document for the Precise Time and Time Interval (PTTI) Interface, 12 February 2002 (CAGE Code 3D619).
- NMEA 0183, Standard for Interfacing Marine Electronic Devices, Version 4.00, November 1, 2008.
- Telcordia GR-378-CORE, Generic Requirements for Timing Signal Generators, Issue 4, December 2010.

