AGNSS-Packet Timing Hybrid

1st Nov 2011 Jihoon Lee

Contents

- Background
- AGNSS-Packet Timing Concept
- Hybrid Network and Clustering
- Effect on Servers
- Performance
- Summary

Background

AGNSS

- Residential house: -10 ~ -20dB blockage by outer wall or roof
- Building: -20 ~ -30dB blockage by outer wall or roof
- Lack of link margin at indoor environment

Packet Timing (PTP / NTP)

- Dependent on PDV and delay asymmetry
- Dependent on the location of Grandmaster(Server) and its capacity

AGNSS-Packet Timing Concept

- ✓ AGNSS Packet timing hybrid
- ✓ End to End synchronization
- ✓ Distributed network
- ✓ Clustering / NL distribution
- ✓ QL-based BMCA
- ✓ Dynamic PPS
- ✓ SyncH : AGPS-PTP hybrid

AGNSS-Packet Timing Architecture

Hybrid Network

Hybrid Network & Clustering

Hybrid Network & Clustering

Dynamic PPS

- Packet rate control by estimating network quality
- Optimize packet rate in order to reduce network load

Effect on Servers

- Estimated based on the fix probability from SigNAV's study
 - Good efficiency of the required number of server in most cases of rural and urban areas except for 'dense urban concrete office with higher attenuation tinted windows'
- Servers in a case scenario Conservatively low fix probability applied

Assumed,

- 500 clients as a PTP GM capacity
- 10% of households have Smallcells

	Rural standalone house	Dense urban concrete apartment	Rural brick apartment	Total
The number of households	455,857 (20%)	1,258,658 (55%)	577,379 (25%)	2,291,894
Fix probability assumed	90%	60%	70%	

2005 Housing in Seoul, KOSIS

Required number of Servers Compared to PTP standalone

Performance – Private Network

Performance – Private Network

Synchronized to local masters with down to < 10ppb frequency accuracy over 8 hrs **Cluster 3** 200 DUT8(M) 100 DUT7(S) -100 -150 -200 Frequency accuracy measured on DUT2 DUT5(M) with clustering **Cluster 1** DUT6(S) **Cluster 2** DUT2(S) DUT1(M) DUT3(S) DUT4(S)

⊕ LG-ERICSSON ≢

Performance – Public Network

Synchronized to local masters on live networks ISPs provide (8~10 hops)

Performance - Clustering Range Tested

Summary

- ✓ Complementary cooperation of AGPS and PTP
- ✓ Reliability from redundant masters
- ✓ Flexible clustering
- ✓ Server reduction
- ✓ Location from GPS

