

Metrics and Slave Clock Models

Presenter: Malcolm Paterson,

VP of Engineering, Calnex Solutions Ltd

Overview

- **Desire** to be able to characterise a network and on the basis of standardised measurements and guarantee PTP operation Go/No-Go
- How Create a model for a slave clock with parameters and minimum values or a range of values for these parameters to support the measurements
- What should the model be?
- The approach outlined is consistent with the current measurement approaches

Not the answer but a means to the answer

The Shared Objective

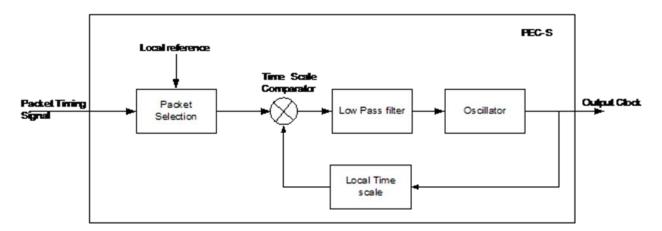
- Deployment of timing elements into a network with a guarantee of performance.
- This presentation outlines an approach which will allow the use of a model with adjustable parameters to converge on a method for measuring performance of networks and for assessing PTP slaves to address this shared Objective

The Search

- Industry looking for pass/fail testing based on required performance masks.
 - Available on the output side of devices E1/T1 mask and 1pps Time of Day error
 - 2. Nothing agreed for the packet side to give the knife edge pass-fail
- Item 1 above allows the performance of a system to be measured after deployment or to allow the performance to be measured against the "standard" G.8261 defined profiles.
- If a method of addressing item 2 were delivered then a network could be assessed for support of timing elements <u>before</u> and <u>during</u> deployment.

The Search

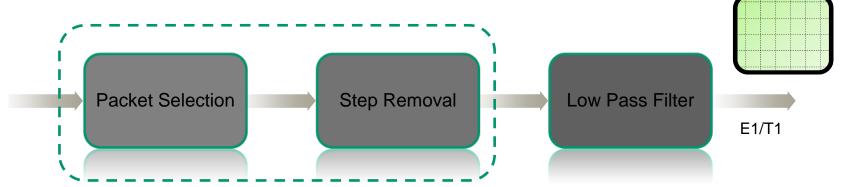
- G.8261 Appendix VI defines a method of generating representative timing profiles to test network elements.
 - It is not binding normative
 - Is seems to be the only agreed method of testing
 - It does not meet the needs of assessing an existing network for future development
- The search goes on measurement of packet behaviour
- 2 main constituencies who need packet metrics
 - Service providers can my network support the required phase and timing accuracy?
 - Network Equipment Manufacturers will my equipment meet the requirements in a real network?


Current Work

- Much work is being done on metrics.
- Actual and experimental data is being sliced and diced and tested to arrive at a set of consistent measures.
- Several techniques are being used to try to achieve the necessary insights
 - TIE Data
 - Banded data
 - % data
 - MAFE, MATIE.....

The Approach

 The Functional model of a PEC-S packet based clock as shown in G.8263 Appendix A is the basis of the proposed approach.

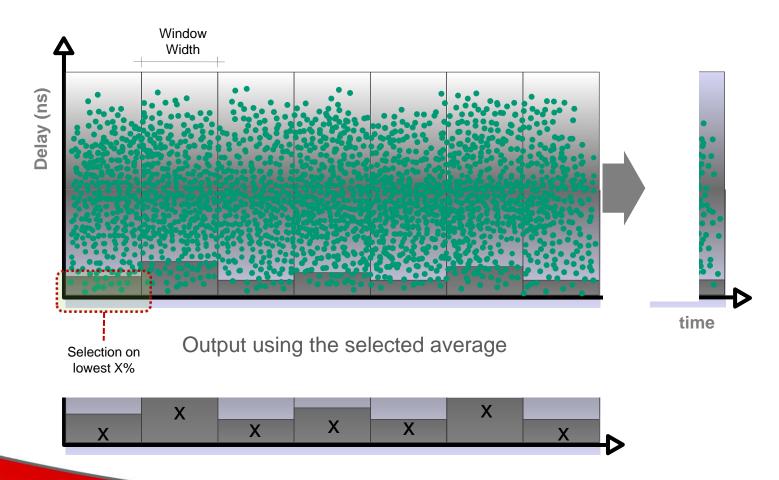


• The details of how the model refers to individual implementations is not standardised and is the subject of IP.

The Approach

 One change proposed is to separate out the step removal stage of the previous model.

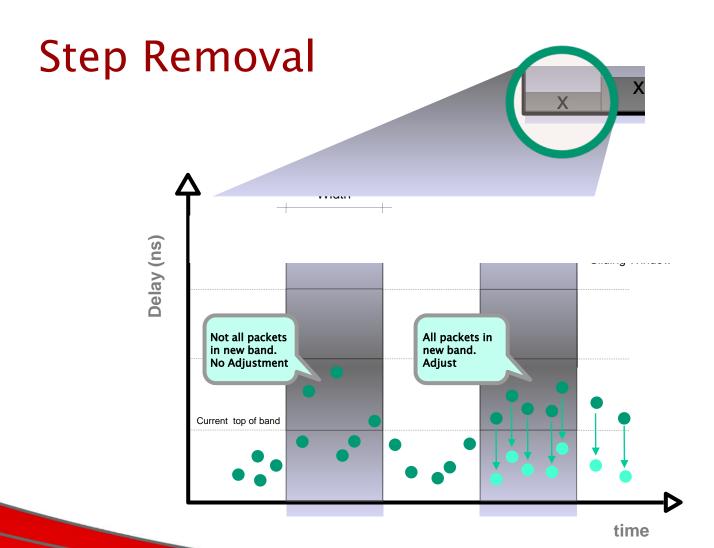
- At each stage analysis and results are presented to show "performance" at this stage or the effect of altering the parameters.
- The aim is to correlate the output's final results with the results of the model steps.



Packet Selection

- The selection parameters for this are:
 - A tiled Window Width. The packet selection is applied for each of the windows.
 - Within the window the packets may be selected in a number of ways
 - Floor Packets the "luckiest" x% or packets below a specified delay Y nanoseconds (X and Y user selectable)
 - Banded Packets the packets with a delay within a specified or calculated band
- The output is the analysis based on the population of selected window values
 - MTIE, TDEV, MAFE, MATE

Packet Selection

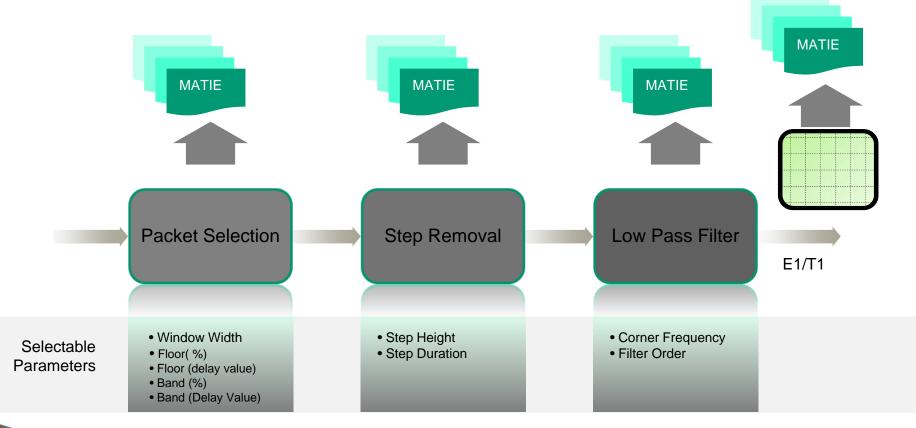


Step Removal

- Remove the steps in the output of the Packet Selection section
- To differentiate between long term step due to a change in network topology and short term step due to traffic changes.
 - Burst of traffic, temporary not to be removed
 - Switching of the path, should not respond to this so remove
- Definition of a step
 - Change of over a preset value for a specified duration these are the selectable parameters
- The output of this stage can be analysed in the same way to show the impact of the process for differing parameters and correlation with the clock output.

Step Removal - illustration

time



Low Pass Filter

- This is the transfer function of the oscillator section of the clock
 - The order of the filter and the corner frequency are the settable parameters
- Again the analysis tools will be applied to the output of this section of the model and should reflect the performance measured at the E1/T1 and 1pps or equivalent outputs

Model Reprise

Conclusion

- Proposed is a model for assessing correlation of packet performance with slave clock performance
- Allow experimentation through variable parameters so that the same data can be analysed multiple times with a view to achieving agreement on what the "minimum" parameter values should be for real life clocks
- Determining where the greatest sensitivities are in the model

www.calnexsol.com

Malcolm Paterson
Malcolm.paterson@calnexsol.com
+44 (0) 1506-671-416

Calnex Paragon Sync

- IEEE 1588v2
- CES
- Sync-E
- OAM

