Introduction to Multi-Protocol Label Switching (MPLS)

Matthew Bocci, Alcatel-Lucent IP Division
Agenda

History of MPLS Standardisation

MPLS Architecture

Control Plane

QoS and Traffic Engineering

Protection and Resiliency

MPLS Based Services:

- Layer 3 Virtual Private Networks
- Layer 2 Virtual Private Networks & Pseudowires
IP/MPLS in Carrier Networks

- Enhance forwarding performance of router networks
- Service convergence over MPLS including VPLS
- Service enabling the edge
 - L3 based MPLS VPN
- Business enabling the core
 - MPLS attempt to enhance network resilience
 - MPLS-enhanced QoS
- Infrastructure optimization
 - Traffic engineering
 - Hierarchical core design

MPLS Applications

MPLS Standardisation Activities

- 2005+
 - Multi-segment PWs, Multicast in VPLS / IPVPNs / pt-mp LSPs
- 2001-2004
 - Development of pseudowires / L2VPNs
 - Unified Control Plane for Non-Packet and Packet Networks
- 1999-2000
 - Enhanced Network Resilience
- 1998
 - Traffic Engineering
 - Virtual Private Networks
- 1996-1997
 - Forwarding Performance

All Rights Reserved © Alcatel-Lucent 2006, ####
Multiprotocol Label Switching Architecture

MPLS Shim label added to each packet
Forwarding decisions are based on label, to follow a label switched path (LSP)
Runs over many link layers – SDH, Ethernet, etc
MPLS Control Plane

Distribute FEC/Label bindings between LSRs

- Label Distribution Protocol (LDP) for non-TE LSPs
 - Simple protocol that exchanges label bindings with peer LSRs

- RSVP-TE for traffic engineered LSPs
 - Soft-state protocol enabling BW parameters & path to be signalled

Use label Y to reach FEC X
Use label Z to reach FEC X
QoS and Traffic Engineering

MPLS Label:

- 20 Bit label
- EXP
- TTL

Encode CoS and/or DP

Control plane to determine LSP path and reserve resources along path

Label Inferred LSP
Drop precedence determined by EXP bits
LSRs schedule according to label context

Classified according to L2 or L3 criteria

Policing/Shaping applied

EXP Inferred LSP
EXP bits determine CoS / DP
LSRs schedule according to EXP bits context

RSVP-TE signals resource requirements along LSP path
Protection and Resiliency

MPLS provides a common protection layer, independent of underlying transport mechanisms.

Path protection:
- Protected LSP
- Backup LSP

Load balancing:
- Demand/2

Local protection:
- Detour A-E
- Detour B-E
- Detour C-E
- Detour D-E

Wide range of options
MPLS based Services and Virtual Private Networks

Two VPN classes:
Layer 3 VPNs: IP
Layer 2 VPNs:
- Virtual Private Wire Service (pt-pt Ethernet, FR, ATM, etc)
- Virtual Private LAN Service (mp-mp Ethernet)

IETF RFC 4664
Border Gateway Protocol (BGP) Layer 3 VPNs

MP-BGP* exchanges VPN membership/reachability info

Customer routes

Virtual Routing & Forwarding

IP Service

*IETF RFC 4364

*MP-BGP: Multiprotocol BGP
Pseudowires are building blocks of layer 2 VPNs.
Virtual Private LAN Service (VPLS)

Transparent L2 VPN for Ethernet
- Learns MAC addresses per PW
- Forwarding based on MAC addresses
- Split-horizon forwarding for loop prevention
 - Does not use Spanning Tree
- Uses hierarchy to improve scaling (H-VPLS)

IETF RFC 4762
OAM in a Converged MPLS Network

OAM tools for each layer of the converged network

- **Bidirectional Forwarding Detection (BFD)**
 Lightweight hello protocol

- **LSP Ping/Trace**
 Modeled after ICMP ping /traceroute

- **Virtual Circuit Connectivity Verification (VCCV)**
 PW Connectivity verification

- **LDP Status Signalling**
 Defect notifications

- **Ethernet**
- **Frame relay**
- **ATM**
- **TDM, etc**
Summary: Why is MPLS Important?

MPLS adds label to a packet to enable it to be switched through a PSN
- Full set of TE, OAM, and protection mechanisms
- Enhance to support both Layer 2 and Layer 3 services

Core carrier networks moving rapidly to using MPLS
- Driven by expected lower CAPEX/OPEX of a converged network and demands of new services
 - Ethernet services need MPLS QoS/TE/Protection
 - Enables Ethernet transport layer to support range of legacy (TDM, ATM...) and new services