Advanced Features of Network Emulators for Sync Applications

Chip Webb, CTO – Anue Systems

ITSF 2007
Timing Over Packet. *Issues*

Issues:

- Behavior of packet networks is still poorly understood.
- Service providers are reluctant to provide real-world, worst-case performance data for their networks (and always will be).
- Sync performance may depend on network characteristics that a provider either doesn't control or is unaware of.
- Sync performance may depend on “secret sauce” in a vendor’s CES Inter-Working Function.
Testing is crucial to Sync Development

- Test new Sync techniques & algorithms
 - Find the breaking point of a system
 - Determine robustness
 - Must be flexible and realistic
 - Directly control parameters of interest
- Build an impairment (loss/wander) budget
 - Impact on application performance
 - Build a link budget, hop-by-hop
 - How much is allowable at each hop?
- Perform interoperability tests
 - Go/No-Go tests against predefined limits
 - Does vendor X meet performance spec?
 - Does vendor X work with vendor Y?
Develop Hop-by-Hop Wander Budget

- System designers are left to specify their own idea of "worst-case."
- If it is too conservative (pessimistic)
 - Leads to over designed systems that cost too much
 - And may unnecessarily delay deployment (and revenue)
- If it is too aggressive (optimistic)
 - System designers may miss key aspects of network behavior.
 - Deployed systems may not work as expected
 - Fiasco.
Packet domain wander budget

End to end allowance

Packet domain allowance

IWF hop1 hop2 hop3 IWF

Reference timing signal (PRC)

NOTE – The reference timing signal (PRC) is used to represent the TDM service clock.

Disturbance load according to traffic models
Flow of interest

Ethernet switches

N = 10
GE = 1 Gbit/s Ethernet
FE = 100 Mbit/s Ethernet
How to test?

- Use a high-performance network emulator
 - Deterministic & Repeatable
 - But how to control it?
- But not all network emulators are suitable
 - Must have high precision
 - Must have realistic worst-case scenarios for testing
- There isn’t one universal idea of what that worst-case scenario should be.
- Until then, network emulators should provide a general purpose facility to control packet delay from user-defined table
Network Impairment Playback

- Control the emulator on a packet-by-packet basis
- For long test durations
- Need to import and play back custom network scenarios
- This boils down to table-based impairment control
 - One table for A->B and another for B->A.
- Each table entry sets the impairment for one packet
- Fully dynamic control with ns precision and repeatability
- Extremely large tables (e.g. model diurnal variation)
Constructing realistic test cases

- Two sources of realistic performance data:
 - Actual network measurements
 - Measure packet delays between “A” and “B”
 - Record for days or weeks. Save to a file
 - Replay these scenarios in the lab, over and over
 - Can magnify impairment to mimic worst-case (margining)
 - Can focus replay just on significant network “events”
 - An analytical model
 - Use above measurements to formulate a “golden” model of network behavior
 - Can be abstract and parameterized
 - Run the model for various scenarios of interest
 - E.g. 10 hops with 10 to 30% load and QoS.
Applications

- Test new technologies, protocols or applications with virtually limitless control for:
 - Any dynamic or bursty network scenario
 - Extremely high frequency jitter or low frequency wander can be easily simulated
 - Allows custom statistical impairment models (ex: load dependent jitter)
- Stress *Timing over Packet* (PTP, NTP, RTP) clock recovery algorithms with maximum precision of delay variation – *per packet delay control*
- Develop a library of test scenarios
Conclusion

- Table-driven “Network Impairment Playback” is a key feature for testing Sync applications.
- Allows the user to play back very long impairment scenarios with packet-by-packet precision.
- Gives complete control to the user
- Scenarios can be based on
 - Actual network measurements or
 - Synthetic sequences from a “golden” model.
Questions?

- Contact me!
 - Chip Webb
 Anue Systems
 9111 Jollyville Rd
 Suite 100
 cwebb@anuesystems.com (preferred)
 +1 (512) 527-0453 x102
Thank You!